Метод Монте Карло Простыми Словами в Excel • Обработка результатов

Анализ Монте-Карло

Названный в честь княжества, известного своими казино, термин «Анализ Монте-Карло» вызывает в воображении образы сложной стратегии, направленной на максимизацию доходов в игре в казино.

Тем не менее, Монте-Карло Анализ относится к технике управления проектами, где менеджер вычисляет и рассчитывает общую стоимость проекта и график проекта много раз.

Это делается с использованием набора входных значений, которые были выбраны после тщательного обдумывания распределения вероятностей или потенциальных затрат или потенциальных длительностей.

Важность анализа Монте-Карло

Анализ Монте-Карло важен в управлении проектом, поскольку позволяет менеджеру проекта рассчитать возможную общую стоимость проекта, а также найти диапазон или потенциальную дату завершения проекта.

Поскольку анализ методом Монте-Карло использует количественные данные, это позволяет руководителям проектов лучше общаться с высшим руководством, особенно когда последнее настаивает на нецелесообразных сроках завершения проекта или нереальных затратах на проект.

Кроме того, этот тип анализа позволяет менеджерам проектов количественно оценить опасности и неясности в графиках проектов.

Простой пример анализа Монте-Карло

Менеджер проекта создает три оценки продолжительности проекта: одна — наиболее вероятная продолжительность, другая — сценарий наихудшего варианта, а другая — сценарий наилучшего варианта. Для каждой оценки менеджер проекта назначает вероятность возникновения.

Первое задание может занять три дня (вероятность 70%), но оно также может быть выполнено за два или даже четыре дня. Вероятность того, что это займет два дня, составляет 10%, а вероятность того, что он займет четыре дня, составляет 20%.

Второе задание имеет 60% вероятности выполнения шести дней, 20% каждого из которых будет выполнено через пять или восемь дней.

Вероятность выполнения последнего задания составляет 80% за четыре дня, 5% — за три дня и 15% — за пять дней.

Первое задание может занять три дня (вероятность 70%), но оно также может быть выполнено за два или даже четыре дня. Вероятность того, что это займет два дня, составляет 10%, а вероятность того, что он займет четыре дня, составляет 20%.

Второе задание имеет 60% вероятности выполнения шести дней, 20% каждого из которых будет выполнено через пять или восемь дней.

Вероятность выполнения последнего задания составляет 80% за четыре дня, 5% — за три дня и 15% — за пять дней.

Используя Анализ Монте-Карло, проводится серия симуляций вероятностей проекта. Симуляция должна выполняться тысячу с лишним раз, и для каждой симуляции указывается дата окончания.

Нормальная кривая или кривая колокола — в кривой вероятности этого типа значения в середине наиболее вероятны.

Логнормальная кривая — здесь значения перекошены. Анализ Монте-Карло дает этот тип распределения вероятностей для управления проектами в сфере недвижимости или нефтяной промышленности.

Равномерная кривая — все экземпляры имеют равную вероятность возникновения. Этот тип распределения вероятностей является общим для производственных затрат и будущих доходов от продаж нового продукта.

Треугольная кривая — менеджер проекта вводит минимальные, максимальные или наиболее вероятные значения. Кривая вероятности, треугольная, будет отображать значения вокруг наиболее вероятного варианта.

Нормальная кривая или кривая колокола — в кривой вероятности этого типа значения в середине наиболее вероятны.

Логнормальная кривая — здесь значения перекошены. Анализ Монте-Карло дает этот тип распределения вероятностей для управления проектами в сфере недвижимости или нефтяной промышленности.

Равномерная кривая — все экземпляры имеют равную вероятность возникновения. Этот тип распределения вероятностей является общим для производственных затрат и будущих доходов от продаж нового продукта.

Треугольная кривая — менеджер проекта вводит минимальные, максимальные или наиболее вероятные значения. Кривая вероятности, треугольная, будет отображать значения вокруг наиболее вероятного варианта.

Заключение

Анализ по методу Монте-Карло является важным методом, принятым менеджерами для расчета многих возможных дат завершения проекта и наиболее вероятного бюджета, необходимого для проекта.

Используя информацию, полученную в ходе анализа методом Монте-Карло, руководители проектов могут предоставить старшему руководству статистические данные за время, необходимое для завершения проекта, а также предложить подходящий бюджет.

Анализ Монте-Карло.
Равномерная кривая — все экземпляры имеют равную вероятность возникновения. Этот тип распределения вероятностей является общим для производственных затрат и будущих доходов от продаж нового продукта.
эксперт
Мнение эксперта
Михаил Соловьев, консультант по вопросам работы с продуктами Microsoft
Если у вас возникнут сложности, я помогу разобраться!
Задать вопрос эксперту
Анализ Монте-Карло дает этот тип распределения вероятностей для управления проектами в сфере недвижимости или нефтяной промышленности. Если же вы хотите что-то уточнить, обращайтесь ко мне!
Процесс познания реальности неизменно требует математики. Будь то физика, химия, молекулярная биология, новейшие методы в медицине, а также социология и экономика, все эти дисциплины, в той или иной степени, используют математический аппарат разной сложности. Взрывное развитие компьютерных технологий вооружило исследователей и мощными численными приемами.
Метод Монте Карло Простыми Словами в Excel • Обработка результатов

НОУ ИНТУИТ | Лекция | Выборочный метод Монте-Карло

«Имитационная модель — логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта» [11] .

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector