Метод Касательных в Excel Что Это Такое • Проблемы авс-анализа

Метод Ньютона (метод касательных).

Суть метода состоит в том, что на -й итерации в точке строится касательная к кривой и ищется точка пересечения касательной с осью абсцисс (рис. 1.6). Если задан интервал изоляции корня , то за начальное приближение принимается тот конец отрезка, на котором

Уравнение касательной, проведенной к кривой в точке с координатами и , имеет вид:

За следующее приближение корня примем абсциссу точки пересечения касательной с ocью OX. Из (1.2) при , получим

Аналогично могут быть найдены и следующие приближения как точки пересечения с осью абсцисс касательных, проведенных в точках , и т.д. Формула для -го приближения имеет вид:

Для завершения итерационного процесса можно использовать условия или .

Объем вычислений в методе Ньютона больше, чем в других методах, поскольку приходится находить значение не только функции , но и ее производной. Однако скорость сходимости здесь значительно выше.

Пример 1.2. Решить уравнение на отрезке методом Ньютона c точностью .

Решение. Определим первые и вторые производные заданной функции : ; . Проверим выполнение условия сходимости на концах заданного интервала: — не выполняется, — выполняется. За начальное приближение корня можно принять . Находим первое приближение:

Так как , итерационный процесс заканчивается. Таким образом, приближенным решением данного уравнения является .

На рис. 1.7 приведена программа решения данного уравнения методом Ньютона. В качестве исходных данных вводятся начальное приближение и точность вычисления.

Пример 1.3. Решить уравнение на отрезке методом Ньютона c точностью с помощью программы Excel.

A B C D
x F(x) F'(x) погрешность
1,00000
0,75000 1,00000 4,00000 0,25000
0,68605 0,17188 2,68750 0,06395
0,68234 0,00894 2,41198 0,00371
0,68233 0,00003 2,39676 0,00001
Рис. 1.8. Решение уравнения методом Ньютона с помощью программы Excel.

1) Ввести в ячейки A1:D1 заголовки столбцов.

2) В ячейку A2 – значение начального приближения

3) В ячейку B3 – формулу функции =A2^3+A2-1

4) В ячейку C3 – формулу производной функции =3*A2^2+1

5) В ячейку A3 – формулу первого приближения =A2-B3/C3

6) В ячейку D3 – погрешность =ABS(A3-A2)

7) Выделить ячейки A3:D3 и скопировать формулы в соседние ячейки расположенных ниже строк A4:D4, A5:D5, и т.д. при помощи маркера заполнения. Каждая новая строка содержит результаты очередного приближения.

8) В столбце A найти значение корня, соответствующее заданной точности.

Приближенное решение данного уравнения содержится в ячейке A6 (погрешность в ячейке D6).

Для использования этого метода исходное нелинейное уравнение необходимо привести к виду .

В качестве можно принять функцию ,где M ‑ неизвестная постоянная величина, которая определяется из условия сходимости метода простой итерации . При этом для определения M условие сходимости записывается в следующем виде:

Если известно начальное приближение корня , подставляя это значение в правую часть уравнения , получаем новое приближение .

Далее подставляя каждый раз новое значение корня в уравнение , получаем последовательность значений:

, ,. , k = 1,2. n.

Итерационный процесс прекращается, если результаты двух последовательных итераций близки, т.е. .

а) б)
Рис. 1.9. Геометрическая интерпретация метода простой итерации.

Пример 1.4. Решить уравнение на отрезке методом простой итерации c точностью .

Решение. Из условия сходимости (1.5) , при определяем .Пусть .

Подставляя каждый раз новое значение корня в уравнение

Теперь и приближенным решением данного уравнения c точностью является .

На рис.1.10 приведена программа решения данного уравнения методом простой итерации. В качестве исходных данных вводятся начальное приближение, точность вычисления и значение постоянной М.

Пример 1.4. Решить уравнение на отрезке методом простой итерации c точностью с помощью программы Excel.

A B C D
x f(x) M погрешность
0,8 0,2
0,7376 0,312 0,0624
0,70982 0,13889 0,02777881
0,69633 0,06746 0,01349237
0,68954 0,03396 0,00679209
0,68606 0,01738 0,0034769
0,68427 0,00897 0,00179463
Рис.1.11. Решение уравнения методом простой итерации с помощью программы Excel.

1) Ввести в ячейки A1:D1 заголовки столбцов.

2) В ячейку A2 – значение начального приближения

3) В ячейку B3 – формулу функции =A2^3+A2-1

4) В ячейку C2 – значение M 5

5) В ячейку A3 – формулу первого приближения =A2-B3/$C$2

6) В ячейку D3 – погрешность =ABS(A3-A2)

7) Выделить ячейки A3:D3 и скопировать формулы в соседние ячейки расположенных ниже строк A4:D4, A5:D5, и т.д. при помощи маркера заполнения. Каждая новая строка содержит результаты очередного приближения.

8) В столбце A найти значение корня, соответствующее заданной точности.

Приближенное решение данного уравнения содержится в ячейке A9 (погрешность в ячейке D9).

[expert_bq id=»1570″]при сохранении книги Excel после поиска решения все значения, введенные в окнах диалога Поиск решения , сохраняются вместе с данными рабочего листа. Если же вы хотите что-то уточнить, обращайтесь ко мне![/expert_bq] · Метод поиска – служит для выбора алгоритма оптимизации. Метод Ньютона был рассмотрен ранее. В Методе сопряженных градиентов запрашивается меньше памяти, но выполняется больше итераций, чем в методе Ньютона. Данный метод следует использовать, если задача достаточно велика и необходимо экономить память, а также если итерации дают слишком малое отличие в последовательных приближениях.
Метод Касательных в Excel Что Это Такое • Проблемы авс-анализа

Метод Ньютона (метод касательных).

Очевидно, что этот метод обеспечивает сходящийся процесс приближений лишь при выполнении некоторых условий (например при непрерывности и знакопостоянстве первой и второй производной функции в окрестности корня) и при их нарушении либо дает расходящийся процесс (4), либо приводит к другому корню (5).

а) б)
Рис. 1.9. Геометрическая интерпретация метода простой итерации.
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: