Как Рассчитать Критерий Вилкоксона в Excel • Распределение стьюдента

Критерий Уилкоксона

Т-Критерий Вилкоксона — непараметрический статистический тест (критерий), используемый для проверки различий между двумя выборками парных измерений. Впервые предложен Фрэнком Уилкоксоном [1] .

Другие названия: W-критерий Вилкоксона [1], критерий знаковых рангов Вилкоксона, критерий суммы рангов Уилкоксона, Критерий Уилкоксона для связных выборок [2]

Содержание

Назначение критерия

Критерий предназначен для сопоставления показателей, измеренных в двух разных условиях на одной и той же выборке испытуемых. Он позволяет установить не только направленность изменений, но и их выраженность, то есть, способен определить, является ли сдвиг показателей в одном направлении более интенсивным, чем в другом.

Описание критерия

Ограничения критерия

Нулевые сдвиги исключаются из рассмотрения. (Это требование можно обойти, переформулировав вид гипотезы. Например: сдвиг в сторону увеличения значений превышает сдвиг в сторону их уменьшения и тенденцию к сохранению на прежнем уровне.)

Сдвиг в более часто встречающемся направлении принято считать «типичным», и наоборот.

Есть также урезанный вариант для сравнения одной выборки с известным значением медианы.

Алгоритм

  1. Составить список испытуемых в любом порядке, например, алфавитном.
  2. Вычислить разность между индивидуальными значениями во втором и первом замерах. Определить, что будет считаться типичным сдвигом.
  3. Согласно алгоритму ранжирования, проранжировать абсолютные величины разностей, начисляя меньшему значению меньший ранг, и проверить совпадение полученной суммы рангов с расчетной.
  4. Отметить каким-либо способом ранги, соответствующие сдвигам в нетипичном направлении. Подсчитать их сумму Т.
  5. Определить критические значения Т для данного объема выборки. Если Т-эмп. меньше или равен Т-кр. – сдвиг в «типичную» сторону достоверно преобладает.

Фактически оцениваются знаки значений, полученных вычитанием ряда значений одного измерения из другого. Если в результате количество снизившихся значений примерно равно количеству увеличившихся, то гипотеза о нулевой медиане подтверждается.

Примечания

Полезное

Смотреть что такое «Критерий Уилкоксона» в других словарях:

Критерий Уилкоксона-Манна-Уитни — U критерий Манна Уитни (англ. Mann Whitney U test) непараметрический статистический критерий, используемый для оценки различий между двумя выборками по уровню какого либо признака, измеренного количественно. Позволяет выявлять различия в значении … Википедия

Критерий Краскела — Уоллиса предназначен для проверки равенства медиан нескольких выборок. Данный критерий является многомерным обобщением критерия Уилкоксона Манна Уитни. Критерий Краскела Уоллиса является ранговым, поэтому он инвариантен по отношению к любому… … Википедия

Критерий согласия Колмогорова — или Критерий согласия Колмогорова Смирнова статистический критерий, использующийся для определения того, подчиняются ли два эмпирических распределения одному закону, либо того, подчиняется ли полученное распределение предполагаемой модели.… … Википедия

Критерий Вальда — (максиминный критерий[1]) один из критериев принятия решений в условиях неопределённости. Критерий крайнего пессимизма. История Критерий Вальда был предложен Абрахамом Вальдом в 1955 году для выборок равного объема, а затем распространен на … Википедия

Критерий согласия Пирсона — Критерий Пирсона, или критерий χ² (Хи квадрат) наиболее часто употребляемый критерий для проверки гипотезы о законе распределения. Во многих практических задачах точный закон распределения неизвестен, то есть является гипотезой, которая… … Википедия

Критерий Фишера — (F критерий, φ* критерий, критерий наименьшей значимой разности) апостериорный статистический критерий, используемый для сравнения дисперсий двух вариационных рядов, то есть для определения значимых различий между групповыми средними в… … Википедия

Критерий Кохрена — Критерий Кохрена используют при сравнении трёх и более выборок одинакового объёма . Расхождение между дисперсиями считается случайным при выбранном уровне значимости , если: где квантиль случайной величины при числе суммируемых… … Википедия

Критерий Лиллиефорса — статистический критерий, названный по имени Хьюберта Лиллиефорса, профессора статистики Университета Джорджа Вашингтона, являющийся модификацией критерия Колмогорова–Смирнова. Используется для проверки нулевой гипотезы о том, что выборка… … Википедия

Критерий Манна-Уитни-Уилкоксона — U критерий Манна Уитни (англ. Mann Whitney U test) непараметрический статистический критерий, используемый для оценки различий между двумя выборками по уровню какого либо признака, измеренного количественно. Позволяет выявлять различия в значении … Википедия

Критерий суммы рангов Уилкоксона — U критерий Манна Уитни (англ. Mann Whitney U test) непараметрический статистический критерий, используемый для оценки различий между двумя выборками по уровню какого либо признака, измеренного количественно. Позволяет выявлять различия в значении … Википедия

[expert_bq id=»1570″]Это значит, что в рассматриваемом случае гипотеза полной однородности 2 при проверке с помощью критерия Вилкоксона будет приниматься чаще, чем если она на самом деле верна. Если же вы хотите что-то уточнить, обращайтесь ко мне![/expert_bq] Условие P(X < Y) = 1/2выполнено, если h = (1 —)-1 / 2 (при из отрезка [0 ; 1/2] ). Поскольку h > 1/2 при положительном , то очевидно, что медиана G(x) равна , в то время как медиана F(x) равна 1/2 . Значит, при = 1/2 медианы совпадают, при всех иных положительных — различны. При = 0 медианой G(x) является любая точка из отрезка [0 ; 1].
Как Рассчитать Критерий Вилкоксона в Excel • Распределение стьюдента

38. Критерий Уилкоксона

  1. Составить список испытуемых в любом порядке, например, алфавитном.
  2. Вычислить разность между индивидуальными значениями во втором и первом замерах. Определить, что будет считаться типичным сдвигом.
  3. Согласно алгоритму ранжирования, проранжировать абсолютные величины разностей, начисляя меньшему значению меньший ранг, и проверить совпадение полученной суммы рангов с расчетной.
  4. Отметить каким-либо способом ранги, соответствующие сдвигам в нетипичном направлении. Подсчитать их сумму Т.
  5. Определить критические значения Т для данного объема выборки. Если Т-эмп. меньше или равен Т-кр. – сдвиг в «типичную» сторону достоверно преобладает.

Продолжим обсуждение критерия Вилкоксона. Правила принятия решений и таблица критических значений для критерия Вилкоксона строятся в предположении справедливости гипотезы полной однородности, описываемой формулой (2). А что будет, если эта гипотеза неверна? Другими словами, какова мощность критерия Вилкоксона?

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: