Как интерпретировать значение коэффициента корреляции Пирсона?
Наиболее простым и распространенным способом выявления связи между категориальными переменными является построение таблиц сопряженности, которые показывают, сколько случаев относится одновременно и к определенной категории переменной А, и к определенной категории переменной В.
В рамках анализа таблиц сопряженности мы располагаем рядом способов сделать понимание связи более глубоким. Первый из них позволяет вычислить отношения между реально наблюдаемыми частотами и частотами, которые мы ожидали бы увидеть в том случае, если бы связи не существовало.
С помощью таблиц сопряженности мы можем получить наглядное представление о сочетаниях категорий переменных и сделали обоснованное предположение о наличии и характере связи между ними.
Дайте определение понятию «ошибка» в статистических исследованиях.
решения, в результате которого ложная нулевая гипотеза не может быть отклонена.
С понятиями ошибок первого и второго рода связано решение важного вопроса о том, что можно считать критерием отклонения или принятия статистической гипотезы, Т.е. по каким критериям мы можем судить о том, что статистическая ошибка маловероятна, или о том, что связь статистически значима.
Какова основная цель корреляционного анализа?
Как интерпретировать значение коэффициента корреляции Пирсона?
Критерий корреляции Пирсона позволяет определить, какова теснота (или сила) корреляционной связи между двумя показателями, измеренными в количественной шкале. При помощи дополнительных расчетов можно также определить, насколько статистически значима выявленная связь.
Условия: Сопоставляемые показатели должны быть измерены в количественной шкале (например, частота сердечных сокращений, температура тела, содержание лейкоцитов в 1 мл крови, систолическое артериальное давление).
Посредством критерия корреляции Пирсона можно определить лишь наличие и силу линейной взаимосвязи между величинами. Прочие характеристики связи, в том числе направление (прямая или обратная), характер изменений (прямолинейный или криволинейный), а также наличие зависимости одной переменной от другой — определяются при помощи регрессионного анализа.
Количество сопоставляемых величин должно быть равно двум. В случае анализ взаимосвязи трех и более параметров следует воспользоваться методом факторного анализа.
Критерий корреляции Пирсона является параметрическим, в связи с чем условием его применения служит нормальное распределение каждой из сопоставляемых переменных. В случае необходимости корреляционного анализа показателей, распределение которых отличается от нормального, в том числе измеренных в порядковой шкале, следует использовать коэффициент ранговой корреляции Спирмена.
Следует четко различать понятия зависимости и корреляции. Зависимость величин обуславливает наличие корреляционной связи между ними, но не наоборот.
Для оценки тесноты, или силы, корреляционной связи обычно используют общепринятые критерии, согласно которым абсолютные значения rxy 0.7 — о сильной связи.
Более точную оценку силы корреляционной связи можно получить, если воспользоваться таблицей Чеддока:
[expert_bq id=»1570″]В выходной диапазон будет выведена корреляционная матрица, в которой на пересечении каждых строки и столбца находится коэффициент корреляции между соответствующими параметрами. Если же вы хотите что-то уточнить, обращайтесь ко мне![/expert_bq] При большом числе наблюдений, когда коэффициенты корреляции необходимо последовательно вычислять из нескольких рядов числовых данных, для удобства получаемые коэффициенты сводят в таблицы, называемые корреляционными матрицами.Методы статистики
С понятиями ошибок первого и второго рода связано решение важного вопроса о том, что можно считать критерием отклонения или принятия статистической гипотезы, Т.е. по каким критериям мы можем судить о том, что статистическая ошибка маловероятна, или о том, что связь статистически значима.
Как рассчитать эмпирическое корреляционное отношение в excel. Как рассчитать коэффициент корреляции в Excel
График корреляции в excel
6) В левой верхней ячейке выделенной области появится первый элемент итоговой таблицы. Поэтому гипотеза Н0 отклоняется, то есть параметры регрессии и коэффициент корреляции не случайно отличаются от нуля, а статистически значимы. 7. Полученные оценки уравнения регрессии позволяют использовать его для прогноза.
Как рассчитать коэффициент корреляции в Excel
Приведенная выше формула расчета коэффициента Пирсона, показывает насколько трудоемок этот процесс если выполнять его вручную. Второе, порекомендуйте, пожалуйста, какой вид корреляционного анализа можно использовать для разных выборок с большим разбросом данных? Как мне статистически доказать достоверность отличий между группой старше 60 лет и всеми остальными?
Сделай сам: вычисление корреляций валют с использованием Excel
Мы, к примеру, используем Microsoft Excel, но подойдёт и любая другая программа, в которой можно использовать корреляционную формулу. 7.После этого выделите ячейки с данными по EUR/USD. 9.Нажмите Enter для того, чтобы высчитать коэффициент корреляции для EUR/USD и USD/JPY. Обновлять цифры каждый день не стоит (ну, разве что вы одержимы корреляциями валюты).
Принято следующим образом определять уровень взаимосвязи между различными показателями, в зависимости от коэффициента корреляции:
Если корреляционный коэффициент отрицательный, то это значит, что связь параметров обратная.
Для того, чтобы составить корреляционную матрицу в Экселе, используется один инструмент, входящий в пакет «Анализ данных» . Он так и называется – «Корреляция» . Давайте узнаем, как с помощью него можно вычислить показатели множественной корреляции.
Этап 1: активация пакета анализа
Сразу нужно сказать, что по умолчанию пакет «Анализ данных» отключен. Поэтому, прежде чем приступить к процедуре непосредственного вычисления коэффициентов корреляции, нужно его активировать. К сожалению, далеко не каждый пользователь знает, как это делать. Поэтому мы остановимся на данном вопросе.
После указанного действия пакет инструментов «Анализ данных» будет активирован.
Этап 2: расчет коэффициента
Теперь можно переходить непосредственно к расчету множественного коэффициента корреляции. Давайте на примере представленной ниже таблицы показателей производительности труда, фондовооруженности и энерговооруженности на различных предприятиях рассчитаем множественный коэффициент корреляции указанных факторов.
Этап 3: анализ полученного результата
Теперь давайте разберемся, как понимать тот результат, который мы получили в процессе обработки данных инструментом «Корреляция» в программе Excel.
Как видим, пакет «Анализ данных» в Экселе представляет собой очень удобный и довольно легкий в обращении инструмент для определения множественного коэффициента корреляции. С его же помощью можно производить расчет и обычной корреляции между двумя факторами.
2.Создать столбцы с данными. В нашем примере мы будем считать взаимосвязь, или корреляцию, между агрессивностью и неуверенностью в себе у детей-первоклассников. В эксперименте участвовали 30 детей, данные представлены в таблице эксель:
3.Затем необходимо выбрать пустую ячейку рядом с таблицей и нажать на значок f(x) в панели Excel
4.Откроется меню функций, среди категорий необходимо выбрать Статистические , а затем среди списка функций по алфавиту найти КОРРЕЛ и нажать ОК
5.Затем откроется меню аргументов функции, которое позволит выбрать нужные нам столбики с данными. Для выбора первого столбика Агрессивность нужно нажать на синюю кнопочку у строки Массив1
6.Выберем данные для Массива1 из столбика Агрессивность и нажмем на синюю кнопочку в диалоговом окне
7. Затем аналогично Массиву 1 нажмём на синюю кнопочку у строки Массив2
8.Выберем данные для Массива2 — столбик Неуверенность в себе и опять нажмем синюю кнопку, затем ОК
9.Вот, коэффициент корреляции r-Пирсона посчитан и записан в выбранной ячейке.В нашем случае он положительный и приблизительно равен 0,225 . Это говорит об умеренной положительной связи между агрессивностью и неуверенностью в себе у детей-первоклассников
Таким образом, статистическим выводом эксперимента будет: r = 0,225, выявлена умеренная положительная взаимосвязь между переменными агрессивность и неуверенность в себе.
В некоторых исследованиях требуется указывать р-уровень значимости коэффициента корреляции, однако программа Excel, в отличие от SPSS, не предоставляет такой возможности. Ничего страшного, есть (А.Д. Наследов).
Также Вы можете и приложить её к результатам исследования.
Заметьте! Решение вашей конкретной задачи будет выглядеть аналогично данному примеру, включая все таблицы и поясняющие тексты, представленные ниже, но с учетом ваших исходных данных…
Задача:
Имеется связанная выборка из 26 пар значений (х k ,y k ):
Требуется вычислить/построить:
— коэффициент корреляции;
— проверить гипотезу зависимости случайных величин X и Y, при уровне значимости α = 0.05 ;
— коэффициенты уравнения линейной регрессии;
— диаграмму рассеяния (корреляционное поле) и график линии регрессии;
Вычисляем коэффициент корреляции.
На практике, для вычисления коэффициента корреляции чаще используется формула (1.4) т.к. она требует меньше вычислений. Однако если предварительно была вычислена ковариация cov(X,Y) , то выгоднее использовать формулу (1.1), т.к. кроме собственно значения ковариации можно воспользоваться и результатами промежуточных вычислений.
1.1 Вычислим коэффициент корреляции по формуле (1.4) , для этого вычислим значения x k 2 , y k 2 и x k y k и занесем их в таблицу 1.
x 1 + x 2 + … + x 26 = 25.20000 + 26.40000 + . + 25.80000 = 669.500000
1.3.1. Сложим последовательно все элементы y k
y 1 + y 2 + … + y 26 = 30.80000 + 29.40000 + . + 30.80000 = 793.000000
1.3.2. Разделим полученную сумму на число элементов выборки
1.4.1. Сложим последовательно все элементы 6-го столбца таблицы 1
1.4.2. Разделим полученную сумму на число элементов
1.5.1. Сложим последовательно все элементы 4-го столбца таблицы 1
1.5.2. Разделим полученную сумму на число элементов
1.5.3. Вычтем из последнего числа квадрат величины M x получим значение для S x 2
S x 2 = 663.72731 — 25.75000 2 = 663.72731 — 663.06250 = 0.66481
1.6.1. Сложим последовательно все элементы 5-го столбца таблицы 1
1.6.2. Разделим полученную сумму на число элементов
1.6.3. Вычтем из последнего числа квадрат величины M y получим значение для S y 2
S y 2 = 930.45538 — 30.50000 2 = 930.45538 — 930.25000 = 0.20538
1.7. Вычислим произведение величин S x 2 и S y 2 .
1.8. Извлечем и последнего числа квадратный корень, получим значение S x S y .
1.9. Вычислим значение коэффициента корреляции по формуле (1.4.) .
R = (785.10885 — 25.75000 30.50000) / 0.36951 = (785.10885 — 785.37500) / 0.36951 = -0.72028
Проверяем значимость коэффициента корреляции (проверяем гипотезу зависимости).
Поскольку оценка коэффициента корреляции вычислена на конечной выборке, и поэтому может отклоняться от своего генерального значения, необходимо проверить значимость коэффициента корреляции. Проверка производится с помощью t -критерия:
Искомое значение t кр.α располагается на пересечении строки соответствующей числу степеней свободы и столбца соответствующего заданному уровню значимости α .
В нашем случае число степеней свободы есть n — 2 = 26 — 2 = 24 и α = 0.05 , что соответствует критическому значению критерия t кр.α = 2.064 (см. табл. 2)
2.2. Сравним абсолютное значение t -критерия и t кр.α
Абсолютное значение t -критерия не меньше критического t = 5.08680, t кр.α = 2.064, следовательно экспериментальные данные, с вероятностью 0.95 (1 — α ), не противоречат гипотезе о зависимости случайных величин X и Y.
Вычисляем коэффициенты уравнения линейной регрессии.
Уравнение линейной регрессии представляет собой уравнение прямой, аппроксимирующей (приблизительно описывающей) зависимость между случайными величинами X и Y. Если считать, что величина X свободная, а Y зависимая от Х, то уравнение регрессии запишется следующим образом
Рассчитанный по формуле (3.2) коэффициент b называют коэффициентом линейной регрессии. В некоторых источниках a называют постоянным коэффициентом регрессии и b соответственно переменным.
Погрешности предсказания Y по заданному значению X вычисляются по формулам:
Величину σ y/x (формула 3.4) еще называют остаточным средним квадратическим отклонением , оно характеризует уход величины Y от линии регрессии, описываемой уравнением (3.1), при фиксированном (заданном) значении X.
3.5.1 Извлечем из S y 2 квадратный корень получим:
3.5.4 Вычислим относительную погрешность по формуле (3.5)
Строим диаграмму рассеяния (корреляционное поле) и график линии регрессии.
4.1. Находим минимальный и максимальный элемент выборки X это 18-й и 15-й элементы соответственно, x min = 22.10000 и x max = 26.60000.
4.2. Находим минимальный и максимальный элемент выборки Y это 2-й и 18-й элементы соответственно, y min = 29.40000 и y max = 31.60000.
4.3. На оси абсцисс выбираем начальную точку чуть левее точки x 18 = 22.10000, и такой масштаб, чтобы на оси поместилась точка x 15 = 26.60000 и отчетливо различались остальные точки.
4.4. На оси ординат выбираем начальную точку чуть левее точки y 2 = 29.40000, и такой масштаб, чтобы на оси поместилась точка y 18 = 31.60000 и отчетливо различались остальные точки.
4.5. На оси абсцисс размещаем значения x k , а на оси ординат значения y k .
4.6. Наносим точки (x 1 , y 1 ), (x 2 , y 2 ),…,(x 26 , y 26 ) на координатную плоскость. Получаем диаграмму рассеяния (корреляционное поле), изображенное на рисунке ниже.
Линия регрессии показана на рисунке ниже красным цветом
Обратите внимание, что линия регрессии всегда проходит через точку средних значений величин Х и Y, т.е. с координатами (M x , M y).
Начнём с того, что такое коэффициент корреляции вообще. Он показывает степень взаимосвязи между двумя элементами и всегда находится в диапазоне от -1 (сильная обратная взаимосвязь) до 1 (сильная прямая взаимосвязь). Если коэффициент равен 0, это говорит о том, что взаимосвязь между значениями отсутствует.
Теперь, когда есть все необходимые данные, можно посчитать корреляцию. Перемножьте полученные разности таким образом: (x-x ср) * (y-y ср). После того как вы получите результат для каждой из переменных, просуммируйте полученные числа при помощи функции автосуммы. Таким образом рассчитывается числитель.
Как рассчитать эмпирическое корреляционное отношение в excel. Как рассчитать коэффициент корреляции в Excel
Безусловно, чем больше выборка, тем больше мы ей доверяем в том, что она представляет всю совокупность в целом. Возможно, не совсем интуитивно очевидно, но величина тоже оказывает влияние на степень нашей уверенности в том, что выборка представляет параметр . Это вызвано тем, что большие коэффициенты вряд ли возникли случайным образом или вследствие случайной ошибки при отборе.
3.5.4 Вычислим относительную погрешность по формуле (3.5)
Как найти коэффициент регрессии в excel. Корреляционно-регрессионный анализ в Excel: инструкция выполнения
Корреляция в переводе на русский язык – не что иное, как связь. В случае корреляционной связи прослеживается соответствие нескольких значений одного признака нескольким значениям другого признака. В качестве примеров можно рассмотреть установленные корреляционные связи между:
Для большинства медико-биологических процессов статистически доказано присутствие этого типа связи.
Статистические методы позволяют установить факт существования взаимозависимости признаков. Использование для этого специальных расчетов приводит к установлению коэффициентов корреляции (меры связанности).
Такие расчеты получили название корреляционного анализа. Он проводится для подтверждения зависимости друг от друга 2-х переменных (случайных величин), которая выражается коэффициентом корреляции.
Использование корреляционного метода позволяет решить несколько задач:
- выявить наличие взаимосвязи между анализируемыми параметрами;
- знание о наличии корреляционной связи позволяет решать проблемы прогнозирования. Так, существует реальная возможность предсказывать поведение параметра на основе анализа поведения другого коррелирующего параметра;
- проведение классификации на основе подбора независимых друг от друга признаков.
Это наиболее часто используемые параметры, кроме них есть и другие.
Значение коэффициента может выражаться как положительным, так и отрицательными.
В первом случае при увеличении значения одной переменной наблюдается увеличение второй. При отрицательном коэффициенте – закономерность обратная.
Расчёт с помощью пакета анализа
Прежде чем воспользоваться инструментом корреляционного анализа, его нужно активировать. Для этого необходимо выполнить следующие действия:
- На панели задач активировать вкладку «Данные».
- Нажать кнопку «Анализ данных».
- В новом окне выделить строку «Корреляция» и нажать «ОК». Появится окно с параметрами.
- Для выбора входного интервала необходимо установить курсор в соответствующее поле и выделить сразу оба столбца.
- Параметр группировки следует о. Вывод результатов возможен в указанное место, на новый лист или в новую книгу.
- Следует отметить соответствующее поле.
Как использовать поиск в Excel по одному или нескольким значениям
После указание всех параметров следует нажать «ОК».
Для чего нужен коэффициент корреляции?
Данный статистический показатель позволяет не только проверить предположение о существовании линейной взаимосвязи между признаками, но и установить ее силу.
Это значит, что доказанный статистически факт наличия связи между величинами не является подтверждением того, что установлена причина наблюдаемых изменений. Как правило, исследователь делает вывод о наличии двух взаимосвязанных следствий.
Свойства коэффициента корреляции
Этой статистической характеристике присущи следующие свойства:
- значение коэффициента располагается в диапазоне от -1 до +1. Чем ближе к крайним значениям, тем сильнее положительная либо отрицательная связь между линейными параметрами. В случае нулевого значения речь идет об отсутствии корреляции между признаками;
- положительное значение коэффициента свидетельствует о том, что в случае увеличения значения одного признака наблюдается увеличение второго (положительная корреляция);
- отрицательное значение – в случае увеличения значения одного признака наблюдается уменьшение второго (отрицательная корреляция);
- приближение значения показателя к крайним точкам (либо -1, либо +1) свидетельствует о наличии очень сильной линейной связи;
- показатели признака могут изменяться при неизменном значении коэффициента;
- корреляционный коэффициент является безразмерной величиной;
- наличие корреляционной связи не является обязательным подтверждением причинно-следственной связи.
Значения коэффициента корреляции
Охарактеризовать силу корреляционной связи можно прибегнув к шкале Челдока, в которой определенному числовому значению соответствует качественная характеристика.
Шкала может использоваться и для отрицательной корреляции. В этом случае качественные характеристики заменяются на противоположные.
Можно воспользоваться упрощенной шкалой Челдока, в которой выделяется всего 3 градации силы корреляционной связи:
Данный статистический показатель позволяет не только проверить предположение о существовании линейной взаимосвязи между признаками, но и установить ее силу.
Линейная регрессия в программе Excel
Внизу, в качестве примера, представлена таблица, в которой указана среднесуточная температура воздуха на улице, и количество покупателей магазина за соответствующий рабочий день. Давайте выясним при помощи регрессионного анализа, как именно погодные условия в виде температуры воздуха могут повлиять на посещаемость торгового заведения.
Общее уравнение регрессии линейного вида выглядит следующим образом: У = а0 + а1х1 +…+акхк. В этой формуле Y
означает переменную, влияние факторов на которую мы пытаемся изучить. В нашем случае, это количество покупателей. Значение
x
– это различные факторы, влияющие на переменную. Параметры
a
являются коэффициентами регрессии. То есть, именно они определяют значимость того или иного фактора. Индекс
k
обозначает общее количество этих самых факторов.
Виды коэффициента корреляции
Коэффициенты корреляции можно классифицировать по знаку и значению:
В зависимости от анализируемых значений рассчитывается коэффициент:
Недостатков использования линейного корреляционного коэффициента Пирсона немного:
- метод неустойчив в случае выбросов числовых значений;
- с помощью этого метода возможно определение корреляционной силы только для линейной взаимосвязи, при других видах взаимных связей переменных следует использовать методы регрессионного анализа.
Ранговая корреляция определяется методом Спирмена, позволяющим статистически изучить связь между явлениями. Благодаря этому коэффициенту вычисляется фактически существующая степень параллелизма двух количественно выраженных рядов признаков, а также оценивается теснота, выявленной связи.
Метод Спирмена рекомендуется применять в ситуациях:
- не требующих точного определения значение корреляционной силы;
- сравниваемые показатели имеют как количественные, так и атрибутивные значения;
- равнения рядов признаков с открытыми вариантами значений.
Метод Спирмена относится к методам непараметрического анализа, поэтому нет необходимости проверять нормальность распределения признака. К тому же он позволяет сравнивать показатели, выраженные в разных шкалах. Например, сравнение значений количества эритроцитов в определенном объеме крови (непрерывная шкала) и экспертной оценки, выражаемой в баллах (порядковая шкала).
На эффективность метода отрицательно влияет большая разница между значениями, сравниваемых величин. Не эффективен метод и в случаях когда измеряемая величина характеризуется неравномерным распределением значений.
Регрессионный анализ в Excel
Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.
Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.
- линейной (у = а + bx);
- параболической (y = a + bx + cx 2 );
- экспоненциальной (y = a * exp(bx));
- степенной (y = a*x^b);
- гиперболической (y = b/x + a);
- логарифмической (y = b * 1n(x) + a);
- показательной (y = a * b^x).
Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.
Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.
Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.
В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).
В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».
- Нажимаем кнопку «Офис» и переходим на вкладку «Параметры Excel». «Надстройки».
- Внизу, под выпадающим списком, в поле «Управление» будет надпись «Надстройки Excel» (если ее нет, нажмите на флажок справа и выберите). И кнопка «Перейти». Жмем.
- Открывается список доступных надстроек. Выбираем «Пакет анализа» и нажимаем ОК.
После активации надстройка будет доступна на вкладке «Данные».
Теперь займемся непосредственно регрессионным анализом.
Пошаговый расчет коэффициента корреляции в Excel
Расчёт корреляционного коэффициента предполагает последовательное выполнение ряда математических операций.
Приведенная выше формула расчета коэффициента Пирсона, показывает насколько трудоемок этот процесс если выполнять его вручную. Использование возможностей Excell ускоряет процесс нахождения коэффициента в разы.
Достаточно соблюсти несложный алгоритм действий:
- введение базовой информации – столбец значений х и столбец значений у;
- в инструментах выбирается и открывается вкладка «Формулы»;
- в открывшейся вкладке выбирается «Вставка функции fx»;
- в открывшемся диалоговом окне выбирается статистическая функция «Коррел», позволяющая выполнить расчет корреляционного коэффициента между 2 массивами данных;
- открывшееся окно вносятся данные: массив 1 – диапазон значений столбца х (данные необходимо выделить), массив 2 – диапазон значений столбца у;
- нажимается клавиша «ок», в строке «значение» появляется результат расчета коэффициента;
- вывод относительно наличия корреляционной связи между 2 массивами данных и ее силе.
Лаб_7 Корреляционный анализ
КОРРЕЛЯЦИОННЫЙ АНАЛИЗ В
EXCEL
1.1 Корреляционный анализ в MS Excel
(коэффициент Пирсона), предполагающий, что выборки X и Y распределены по нормальному закону.
Коэффициент корреляции изменяется от -1 (строгая обратная линейная зависимость) до 1 (строгая прямая пропорциональная зависимость). При значении 0 линейной зависимости между двумя выборками нет.
Общая классификация корреляционных связей (по Ивантер Э.В., Коросову А.В., 1992):
, или
тесная
при коэффициенте корреляции
r0,70
;
Существует несколько типов коэффициентов корреляции, что зависит от переменных Х и Y, которые могут быть измерены в разных шкалах. Именно этот факт и определяет выбор соответствующего коэффициента корреляции (см. табл. 13):
В MS Excel для вычисления парных коэффициентов линейной корреляции используется специальная функция КОРРЕЛ (массив1; массив2),
№ испытуемых | X | Y |
1 | 19 | 17 |
2 | 32 | 7 |
3 | 33 | 17 |
4 | 44 | 28 |
5 | 28 | 27 |
6 | 35 | 31 |
7 | 39 | 20 |
8 | 39 | 17 |
9 | 44 | 35 |
10 | 44 | 43 |
где массив1 – ссылка на диапазон ячеек первой выборки (X);
массив2 – ссылка на диапазон ячеек второй выборки (Y).
10 школьникам были даны тесты на наглядно-образное и вербальное мышление. Измерялось среднее время решения заданий теста в секундах. Исследователя интересует вопрос: существует ли взаимосвязь между временем решения этих задач? Переменная X — обозначает среднее время решения наглядно-образных, а переменная Y— среднее время решения вербальных заданий тестов.
Для выявления степени взаимосвязи, прежде всего, необходимо ввести данные в таблицу MS Excel (см. табл., рис. 1). Затем вычисляется значение коэффициента корреляции. Для этого курсор установите в ячейку C1. На панели инструментов нажмите кнопку Вставка функции (fx).
В появившемся диалоговом окне Мастер функций выберите категорию Статистические
Рис. 1. Результаты вычисления коэффициента корреляции
Таким образом, связь между временем решения наглядно-образных и вербальных заданий теста не доказана.
Имеются данные по 20 сельскохозяйственным хозяйствам. Найти
коэффициент корреляции
между величинами урожайности зерновых культур и качеством земли и оценить его значимость. Данные приведены в таблице.
Таблица 2. Зависимость урожайности зерновых культур от качества земли
Номер хозяйства | Качество земли, балл | Урожайность, ц/га |
1 | 32 | 19,5 |
2 | 33 | 19 |
3 | 35 | 20,5 |
4 | 37 | 21 |
5 | 38 | 20,8 |
6 | 39 | 21,4 |
7 | 40 | 23 |
8 | 41 | 23,3 |
9 | 42 | 24 |
10 | 44 | 24,5 |
11 | 45 | 24,2 |
12 | 46 | 25 |
13 | 47 | 27 |
14 | 49 | 26,8 |
15 | 50 | 27,2 |
16 | 52 | 28 |
17 | 54 | 30 |
18 | 55 | 30,2 |
19 | 58 | 32 |
20 | 60 | 33 |
Определите, имеется ли связь между временем работы спортивного тренажера для фитнеса (тыс. часов) и стоимость его ремонта (тыс. руб.):
Время работа тренажера (тыс. часов) | Стоимость ремонта (тыс. руб.) |
0,50 | 7,50 |
0,60 | 7,75 |
0,70 | 7,25 |
0,80 | 7,40 |
0,90 | 7,90 |
1,00 | 8,00 |
1,10 | 8,50 |
1,20 | 8,40 |
1,30 | 8,35 |
1,40 | 8,55 |
1,50 | 8,70 |
1,60 | 9,05 |
1,70 | 8,80 |
1,80 | 9,10 |
1,90 | 9,30 |
2,00 | 9,25 |
2,10 | 9,45 |
При большом числе наблюдений, когда коэффициенты корреляции необходимо последовательно вычислять для нескольких выборок, для удобства получаемые коэффициенты сводят в таблицы, называемые корреляционными матрицами
— это квадратная таблица, в которой на пересечении соответствующих строк и столбцов находятся коэффициент корреляции между соответствующими параметрами.
В MS Excel для вычисления корреляционных матриц используется процедура Корреляция
из пакета
Анализ данных.
Процедура позволяет получить корреляционную матрицу, содержащую коэффициенты корреляции между различными параметрами.
выбрать строку
Корреляция
и нажать кнопку
ОК
;
3. в появившемся диалоговом окне указать Входной интервал
, то есть ввести ссылку на ячейки, содержащие анализируемые данные. Входной интервал должен содержать не менее двух столбцов.
переключатель установить в соответствии с введенными данными (по столбцам или по строкам);
5. указать выходной
интервал
, то есть ввести ссылку на ячейку, начиная с которой будут показаны результаты анализа. Размер выходного диапазона будет определен автоматически, и на экран будет выведено сообщение в случае возможного наложения выходного диапазона на исходные данные. Нажать кнопку
ОК
.
В выходной диапазон будет выведена корреляционная матрица, в которой на пересечении каждых строки и столбца находится коэффициент корреляции между соответствующими параметрами. Ячейки выходного диапазона, имеющие совпадающие координаты строк и столбцов, содержат значение 1, так как каждый столбец во входном диапазоне полностью коррелирует сам с собой
Имеются ежемесячные данные наблюдений за состоянием погоды и посещаемостью музеев и парков (см. табл. 3). Необходимо определить, существует ли взаимосвязь между состоянием погоды и посещаемостью музеев и парков.
. Для выполнения корреляционного анализа введите в диапазон A1:G3 исходные данные (рис. 2). Затем в меню
Сервис
выберите пункт
Анализданных
и далее укажите строку
Корреляция
. В появившемся диалоговом окне укажите
Входной интервал
(А2:С7). Укажите, что данные рассматриваются по столбцам. Укажите выходной диапазон (Е1) и нажмите кнопку
ОК
.
На рис. 33 видно, что корреляция между состоянием погоды и посещаемостью музея равна -0,92, а между состоянием погоды и посещаемостью парка — 0,97, между посещаемостью парка и музея — 0,92.
Таким образом, в результате анализа выявлены зависимости: сильная степень обратной линейной взаимосвязи между посещаемостью музея и количеством солнечных дней и практически линейная (очень сильная прямая) связь между посещаемостью парка и состоянием погоды. Между посещаемостью музея и парка имеется сильная обратная взаимосвязь.
Рис. 2. Результаты вычисления корреляционной матрицы из примера 2
. 10 менеджеров оценивались по методике экспертных оценок психологических характеристик личности руководителя. 15 экспертов производили оценку каждой психологической характеристики по пятибальной системе (см. табл. 4). Психолога интересует вопрос, в какой взаимосвязи находятся эти характеристики руководителя между собой.
[expert_bq id=»1570″]Обнаруженная высокая корреляция позволяет прогнозировать протекание каких-либо процессов в научных исследованиях, бизнесе, общественной жизни. Если же вы хотите что-то уточнить, обращайтесь ко мне![/expert_bq] Правильно, между окладом и продажами заисимость не жесткая. Это значит, что у кого-то из сотрудников продажи могли даже снизиться, невзирая на рост оклада. У кого-то остаться неизменными. Но в среднем по фирме продажи выросли, и мы говорим – связь продаж и оклада сотрудников есть, и она корреляционная.Корреляционная матрица в excel — Новости с мира ПК
- не требующих точного определения значение корреляционной силы;
- сравниваемые показатели имеют как количественные, так и атрибутивные значения;
- равнения рядов признаков с открытыми вариантами значений.
Коэффициент корреляции используется в том случае, когда нужно определить значение зависимости между значениями. Позже эти данные задают в одной таблице которая определяется как матрица корреляции. С помощью программы Microsoft Excel можно сделать расчёт корреляции.
Номер хозяйства | Качество земли, балл | Урожайность, ц/га |
1 | 32 | 19,5 |
2 | 33 | 19 |
3 | 35 | 20,5 |
4 | 37 | 21 |
5 | 38 | 20,8 |
6 | 39 | 21,4 |
7 | 40 | 23 |
8 | 41 | 23,3 |
9 | 42 | 24 |
10 | 44 | 24,5 |
11 | 45 | 24,2 |
12 | 46 | 25 |
13 | 47 | 27 |
14 | 49 | 26,8 |
15 | 50 | 27,2 |
16 | 52 | 28 |
17 | 54 | 30 |
18 | 55 | 30,2 |
19 | 58 | 32 |
20 | 60 | 33 |