Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Содержание

Как удалить график но оставить линию тренда. Инструменты прогнозирования в Microsoft Excel

Линия тренда в Excel. Процесс построения

Линия тренда — это один из основных инструментов анализа данных

Чтобы сформировать линию тренда , необхдимо совершить три этапа, а именно:
1. Создать таблицу;
2.
3. Выбрать тип линии тренда.

После сбора всей необходимой информации, можно приступить непосредственно к выполнению шагов на пути к получению конечного результата.

Следующее действие построение самой линии тренда . Итак, для этого необходимо вновь выделить график и выбрать вкладку «Макет» на ленте задач. Следом в данном меню нужно нажать на кнопку «Линия тренда » и выбрать «линейное приближение» или же «экспоненциальное приближение».

Линейная аппроксимация . По характеру данная линия прямая, и стандартно применяется в элементарных случаях, когда функция увеличивается или же уменьшается в приблизительном постоянстве.

Логарифмическая аппроксимация. Если величина сначала верно и быстро растет или же наоборот — убывает, а вот затем, спустя значения, стабилизируется, то данная линия тренда подойдет как нельзя кстати.

Полиномиальная аппроксимация . Переменное возрастание и убывание – вот характеристики, что свойственны данной линии. Причем, степень самих полиномов (многочленов) определяется количеством максимумов и минимумом.

Степенная аппроксимация . Характеризует монотонное возрастание и убывание величины, но применение ее невозможно, если данные имеют отрицательные и нулевые значения.

Скользящее среднее . Используется чтобы наглядно показать прямую зависимость одного от другого, путем сглаживания всех точек колебания. Это достигается путем выделения среднего значения между двумя соседними точками. Таким образом, график усредняется, а количество точек сокращается до значения, что было выбрано в меню «Точки» пользователем.

Как используется? Д ля прогнозирования экономический вариантов используется именно полиноминальная линия, степень многочлена которой определяется на основе нескольких принципов: максимизации коэффициента детерминации, а также экономической динамики показателя в период, за который требуется прогноз.

Следуя всем этапам формирования и, разобравшись в особенностях, можно построить всего первичную линию тренда , которая лишь отдаленно соответствует реальным прогнозам. Но вот после настройки параметров можно уже говорить о более реальной картине прогноза.

Линия тренда в Excel. Настройка параметро в функциональной линии

Нажав на кнопку «Линия тренда », выбираем необходимое меню под названием «Дополнительные параметры». В появившемся окне следует нажать на «Формат линии тренда », а после поставить и отметку напротив значения «поместить на диаграмму величину достоверности аппроксимации R^2». После этого закрываем меню, нажав на соответственную кнопку. На самой же диаграмме появляется коэффициент R^2= 0,6442.

После этого отменяем вводимые изменения. Выделив график и нажав на вкладку «Макет», следом нажимаем на «Линию тренда » и наживаем на «Нет». Следом, перейдя в функцию «Формат линии тренда », нажимаем на полиноминальную линию и пытаемся добиться значения R^2= 0,8321, меняя степень.

Чтобы просмотреть формулы или составить другие, отличные от стандартных вариации прогнозов, достаточно не бояться экспериментировать со значениями, а особенно – с полиномами. Таким образом, используя лишь одну программу Excel, можно создать достаточно точный прогноз исходя из вводимых данных.

Глядя на любой набор данных распределенных во времени (динамический ряд), мы можем визуально определить падения и подъемы показателей, которые он содержит. Закономерность подъемов и падений называется трендом, который может говорить о том, увеличиваются или уменьшаются наши данные.

Пожалуй, цикл статей о прогнозировании я начну с самого простого — построении функции тренда. Для примера возьмем данные о продажах и построим модель, которая опишет зависимость продаж от времени.

Базовые понятия

Думаю, еще со школы все знакомы с линейной функцией, она как раз и лежит в основе тренда:

Y — это объем продаж, та переменная, которую мы будем объяснять временем и от которого она зависит, то есть Y(t);

t — номер периода (порядковый номер месяца), который объясняет план продаж Y;

a0 — это нулевой коэффициент регрессии, который показывает значение Y(t), при отсутствии влияния объясняющего фактора (t=0);

a1 — коэффициент регрессии, который показывает, на сколько исследуемый показатель продаж Y зависит от влияющего фактора t;

E — случайные возмущения, которые отражают влияния других неучтенных в модели факторов, кроме времени t.

Построение модели

Итак, мы знаем объем продаж за прошедшие 9 месяцев. Вот, что из себя представляет наша табличка:

Следующее, что мы должны сделать — это определить коэффициенты a0 и a1 для прогнозирования объема продаж за 10-ый месяц.

Определение коэффициентов модели

Строим график. По горизонтали видим отложенные месяцы, по вертикали объем продаж:

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

В Google Sheets выбираем Редактор диаграмм -> Дополнительные и ставим галочку возле Линии тренда . В настройках выбираем ЯрлыкУравнение и Показать R^2 .

Если вы делаете все в MS Excel, то правой кнопкой мыши кликаем на график и в выпадающем меню выбираем «Добавить линию тренда».

По умолчанию строится линейная функция. Справа выбираем «Показывать уравнение на диаграмме» и «Величину достоверности аппроксимации R^2».

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Она описывает объем продаж в зависимости от номера месяца, на который мы хотим эти продажи спрогнозировать. Рядом видим коэффициент детерминации R^2, который говорит о качестве модели и на сколько хорошо она описывает наши продажи (Y). Чем ближе к 1, тем лучше.

У меня R^2 = 0,75. Это средний показатель, он говорит о том, что в модели не учтены какие-то другие значимые факторы помимо времени t, например, это может быть сезонность.

Прогнозируем

Получаем 153664 продажи в следующем месяце. Если добавим новую точку на график, то сразу видим, что R^2 улучшился.

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Таким образом вы можете спрогнозировать данные на несколько месяцев вперед, но без учета других факторов ваш прогноз будет лежать на линии тренда и будет не таким информативным как хотелось бы. К тому же, долгосрочный прогноз, сделанный таким способом будет очень приблизительным.

Повысить точность модели можно добавлением сезонности к функции тренда, что мы и сделаем в следующей статье.

Уравнением регрессии Y от X называют функциональную зависимость у=f(x) , а ее график – линией регрессии.

Excel позволяет создавать диаграммы и графики довольно приемлемого качества. Excel имеется специальное средство — Мастер диаграмм, под руководством которого пользователь проходит все четыре этапа процесса построения диаграммы или графика.

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

В Excel 2007 названия осей ставятся во вкладке меню МАКЕТ (рис. 32).

Рис. 32. Настойка названий осей графика в Excel 2007

Для получения математической модели необходимо построить на графике линию тренда. В Excel 2003 и 2007 нужно щелкнуть правой кнопкой мыши на точки графика. Тогда в Excel 2003 появится вкладка с перечнем пунктов, из которых выбираем ДОБАВИТЬ ЛИНИЮ ТРЕНДА (рис. 33).

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

После нажатия на пункт ДОБАВИТЬ ЛИНИЮ ТРЕНДА появится окно ЛИНИЯ ТРЕНДА (рис. 34). Во вкладке ТИП можно выбрать следующие типы линий: линейная, логарифмическая, экспоненциальная, степенная, полиномиальная, линейная фильтрация.

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

В Excel 2007 после того, как щелкнем правой кнопкой мыши на точки графика, появится список пунктов меню, из которого ВЫБИРАЕМ ДОБАВИТЬ ЛИНИЮ ТРЕНДА (рис. 36).

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Устанавливаем необходимые флажки и нажимаем кнопку ЗАКРЫТЬ .

На графике появится линия тренда, соответствующее ей уравнение и величина достоверности аппроксимации.

Целью любого прогнозирования является выявление текущей тенденции, и определение предполагаемого результата в отношении изучаемого объекта на определенный момент времени в будущем.

Способ 1: линия тренда

Одним из самых популярных видов графического прогнозирования в Экселе является экстраполяция выполненная построением линии тренда.

Попробуем предсказать сумму прибыли предприятия через 3 года на основе данных по этому показателю за предыдущие 12 лет.

Способ 2: оператор ПРЕДСКАЗ

Экстраполяцию для табличных данных можно произвести через стандартную функцию Эксель ПРЕДСКАЗ . Этот аргумент относится к категории статистических инструментов и имеет следующий синтаксис:

«X» – это аргумент, значение функции для которого нужно определить. В нашем случае в качестве аргумента будет выступать год, на который следует произвести прогнозирование.

«Известные значения y» — база известных значений функции. В нашем случае в её роли выступает величина прибыли за предыдущие периоды.

«Известные значения x» — это аргументы, которым соответствуют известные значения функции. В их роли у нас выступает нумерация годов, за которые была собрана информация о прибыли предыдущих лет.

Естественно, что в качестве аргумента не обязательно должен выступать временной отрезок. Например, им может являться температура, а значением функции может выступать уровень расширения воды при нагревании.

При вычислении данным способом используется метод линейной регрессии.

Давайте разберем нюансы применения оператора ПРЕДСКАЗ на конкретном примере. Возьмем всю ту же таблицу. Нам нужно будет узнать прогноз прибыли на 2018 год.

Но не стоит забывать, что, как и при построении линии тренда, отрезок времени до прогнозируемого периода не должен превышать 30% от всего срока, за который накапливалась база данных.

Способ 3: оператор ТЕНДЕНЦИЯ

Для прогнозирования можно использовать ещё одну функцию – ТЕНДЕНЦИЯ . Она также относится к категории статистических операторов. Её синтаксис во многом напоминает синтаксис инструмента ПРЕДСКАЗ и выглядит следующим образом:

ТЕНДЕНЦИЯ(Известные значения_y;известные значения_x; новые_значения_x;[конст])

Данный оператор наиболее эффективно используется при наличии линейной зависимости функции.

Посмотрим, как этот инструмент будет работать все с тем же массивом данных. Чтобы сравнить полученные результаты, точкой прогнозирования определим 2019 год.

Способ 4: оператор РОСТ

Ещё одной функцией, с помощью которой можно производить прогнозирование в Экселе, является оператор РОСТ. Он тоже относится к статистической группе инструментов, но, в отличие от предыдущих, при расчете применяет не метод линейной зависимости, а экспоненциальной. Синтаксис этого инструмента выглядит таким образом:

РОСТ(Известные значения_y;известные значения_x; новые_значения_x;[конст])

Как видим, аргументы у данной функции в точности повторяют аргументы оператора ТЕНДЕНЦИЯ , так что второй раз на их описании останавливаться не будем, а сразу перейдем к применению этого инструмента на практике.

Способ 5: оператор ЛИНЕЙН

Оператор ЛИНЕЙН при вычислении использует метод линейного приближения. Его не стоит путать с методом линейной зависимости, используемым инструментом ТЕНДЕНЦИЯ . Его синтаксис имеет такой вид:

ЛИНЕЙН(Известные значения_y;известные значения_x; новые_значения_x;[конст];[статистика])

Как видим, прогнозируемая величина прибыли, рассчитанная методом линейного приближения, в 2019 году составит 4614,9 тыс. рублей.

Способ 6: оператор ЛГРФПРИБЛ

Последний инструмент, который мы рассмотрим, будет ЛГРФПРИБЛ . Этот оператор производит расчеты на основе метода экспоненциального приближения. Его синтаксис имеет следующую структуру:

ЛГРФПРИБЛ (Известные значения_y;известные значения_x; новые_значения_x;[конст];[статистика])

Прогнозируемая сумма прибыли в 2019 году, которая была рассчитана методом экспоненциального приближения, составит 4639,2 тыс. рублей, что опять не сильно отличается от результатов, полученных при вычислении предыдущими способами.

Как поступить в случае, если для определенных объемов/размеров продукции хронометражные замеры отсутствуют? Или число замеров недостаточно, а дополнительные наблюдения в ближайшее время осуществить невозможно? Наилучший способ решения данной проблемы – построение расчетных зависимостей (уравнений регрессии) с помощью линий тренда в MS Excel.

Рассмотрим реальную ситуацию: на складе с целью установления величины трудовых затрат по коробочной отборке заказа были проведены хронометражные наблюдения. Результаты этих наблюдений представлены в таблице 1 ниже.

Впоследствии возникла необходимость определения затрат времени на отборку 0,6 и 0,9 м3 товара/заказа. В связи с невозможностью проведения дополнительных хронометражных исследований затраты времени на отборку данных объемов заказа были рассчитаны с помощью уравнений регрессии в MS Excel. Для этого таблица 1 была преобразована в таблицу 2.

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Следующий шаг: курсор мыши был установлен на одной из точек графика и с помощью правой кнопки мыши было вызвано контекстное меню, в котором был выбран пункт: «добавить линию тренда» (рис.2).

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

В появившемся окне настройки формата линии тренда (рис. 3) были последовательно выбраны: тип линии линейная/степенная и установлены флажки на следующие пункты: «показать уравнение на диаграмме» и «поместить на диаграмме величину достоверности аппроксимации (R^2)» (коэффициент детерминации).

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

В результате были получены графики, представленные на рис. 4 и 5.

Примем за основную — линейную расчетную зависимость. Тогда значения затрат времени в зависимости от количества товара будут определяться по формуле: y = 54,511x + 0,1489. Результаты этих расчетов для количества товара, по которому ранее были проведены хронометражные наблюдения, представлены в таблице 3 ниже.

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Определим среднее отклонение затрат времени, рассчитанных по уравнению регрессии от затрат времени, рассчитанных по данным хронометражных наблюдений: (-0,05+0,10-0,05+0,01)/4=0,0019. Таким образом, затраты времени, рассчитанные по уравнению регрессии отличаются от затрат времени, рассчитанных по данным хронометражных наблюдений всего на 0,19%. Расхождение данных ничтожно мало.

По формуле: y = 54,511x + 0,1489 установим затраты времени для количества товара, по которому ранее не были проведены хронометражные наблюдения (таблица 4).

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Таким образом, построение расчетных зависимостей с помощью линий тренда в MS Excel – это отличный способ установления затрат времени по операциям, которые в силу различных причин не были охвачены хронометражными наблюдениями.

Функции универсального доступа в дополнение к множеству функций, которые.

Всего пару лет назад водонепроницаемость смартфонов была характерна.

Если говорить о том, что такое радиация, то сеть Интернет предлагает нам.

[expert_bq id=»1570″]Не менее логично и то, что чем больше страниц просматривает посетитель, тем лучше сайт он захватывает внимание пользователя и заставляет его углубиться в чтение. Если же вы хотите что-то уточнить, обращайтесь ко мне![/expert_bq] Мысленно продолжив линию тренда на будущие месяцы, мы придем к неутешительному выводу – число заинтересованных посетителей продолжит снижаться. Так как пользователи здесь не задерживаются, падение интереса сайта в ближайшем будущем неизбежно вызовет и падение посещаемости.
Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Как построить линию тренда в MS Excel — Вектор развития. Офисные системы для бизнеса

Теперь повторим тот же фокус с “оранжевыми” столбцами и построим вторую линию тренда. Как я и говорил раньше: здесь ситуация не так хороша. Тренд явно показывает, что за расчетный период число просмотров не только не увеличилось, но даже начало падать – медленно, но неуклонно.

Построение линии тренда в Excel. Расчет параметров уравнения тренда

Для наглядной иллюстрации тенденций изменения цены применяется линия тренда. Элемент технического анализа представляет собой геометрическое изображение средних значений анализируемого показателя.

Рассмотрим, как добавить линию тренда на график в Excel.

Добавление линии тренда на график

Для примера возьмем средние цены на нефть с 2000 года из открытых источников. Данные для анализа внесем в таблицу:

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс
Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Линия тренда в Excel – это график аппроксимирующей функции. Для чего он нужен – для составления прогнозов на основе статистических данных. С этой целью необходимо продлить линию и определить ее значения.

Если R2 = 1, то ошибка аппроксимации равняется нулю. В нашем примере выбор линейной аппроксимации дал низкую достоверность и плохой результат. Прогноз будет неточным.

Внимание. Линию тренда нельзя добавить следующим типам графиков и диаграмм:

Уравнение линии тренда в Excel

В предложенном выше примере была выбрана линейная аппроксимация только для иллюстрации алгоритма. Как показала величина достоверности, выбор был не совсем удачным.

Следует выбирать тот тип отображения, который наиболее точно проиллюстрирует тенденцию изменений вводимых пользователем данных. Разберемся с вариантами.

Линейная аппроксимация

Ее геометрическое изображение – прямая. Следовательно, линейная аппроксимация применяется для иллюстрации показателя, который растет или уменьшается с постоянной скоростью.

Рассмотрим условное количество заключенных менеджером контрактов на протяжении 10 месяцев:

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

На основании данных в таблице Excel построим точечную диаграмму (она поможет проиллюстрировать линейный тип):

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Выделяем диаграмму – «добавить линию тренда». В параметрах выбираем линейный тип. Добавляем величину достоверности аппроксимации и уравнение линии тренда в Excel (достаточно просто поставить галочки внизу окна «Параметры»).

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Обратите внимание! При линейном типе аппроксимации точки данных расположены максимально близко к прямой. Данный вид использует следующее уравнение:

Прямая линия на графике отображает стабильный рост качества работы менеджера. Величина достоверности аппроксимации равняется 0,9929, что указывает на хорошее совпадение расчетной прямой с исходными данными. Прогнозы должны получиться точными.

Чтобы спрогнозировать количество заключенных контрактов, например, в 11 периоде, нужно подставить в уравнение число 11 вместо х. В ходе расчетов узнаем, что в 11 периоде этот менеджер заключит 55-56 контрактов.

Экспоненциальная линия тренда

Данный тип будет полезен, если вводимые значения меняются с непрерывно возрастающей скоростью. Экспоненциальная аппроксимация не применяется при наличии нулевых или отрицательных характеристик.

Построим экспоненциальную линию тренда в Excel. Возьмем для примера условные значения полезного отпуска электроэнергии в регионе Х:

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Показатель величины достоверности аппроксимации составил 0,938 – кривая соответствует данным, ошибка минимальна, прогнозы будут точными.

Логарифмическая линия тренда в Excel

Используется при следующих изменениях показателя: сначала быстрый рост или убывание, потом – относительная стабильность. Оптимизированная кривая хорошо адаптируется к подобному «поведению» величины. Логарифмический тренд подходит для прогнозирования продаж нового товара, который только вводится на рынок.

На начальном этапе задача производителя – увеличение клиентской базы. Когда у товара будет свой покупатель, его нужно удержать, обслужить.

Построим график и добавим логарифмическую линию тренда для прогноза продаж условного продукта:

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

R2 близок по значению к 1 (0,9633), что указывает на минимальную ошибку аппроксимации. Спрогнозируем объемы продаж в последующие периоды. Для этого нужно в уравнение вместо х подставлять номер периода.

Период 14 15 16 17 18 19 20
Прогноз 1005,4 1024,18 1041,74 1058,24 1073,8 1088,51 1102,47

Для расчета прогнозных цифр использовалась формула вида: =272,14*LN(B18)+287,21. Где В18 – номер периода.

Полиномиальная линия тренда в Excel

Данной кривой свойственны переменные возрастание и убывание. Для полиномов (многочленов) определяется степень (по количеству максимальных и минимальных величин). К примеру, один экстремум (минимум и максимум) – это вторая степень, два экстремума – третья степень, три – четвертая.

Полиномиальный тренд в Excel применяется для анализа большого набора данных о нестабильной величине. Посмотрим на примере первого набора значений (цены на нефть).

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Чтобы получить такую величину достоверности аппроксимации (0,9256), пришлось поставить 6 степень.

Зато такой тренд позволяет составлять более-менее точные прогнозы.

Линия тренда в Excel. Процесс построения

Линия тренда — это один из основных инструментов анализа данных

Чтобы сформировать линию тренда , необхдимо совершить три этапа, а именно:
1. Создать таблицу;
2.
3. Выбрать тип линии тренда.

После сбора всей необходимой информации, можно приступить непосредственно к выполнению шагов на пути к получению конечного результата.

Следующее действие построение самой линии тренда . Итак, для этого необходимо вновь выделить график и выбрать вкладку «Макет» на ленте задач. Следом в данном меню нужно нажать на кнопку «Линия тренда » и выбрать «линейное приближение» или же «экспоненциальное приближение».

Линейная аппроксимация . По характеру данная линия прямая, и стандартно применяется в элементарных случаях, когда функция увеличивается или же уменьшается в приблизительном постоянстве.

Логарифмическая аппроксимация. Если величина сначала верно и быстро растет или же наоборот — убывает, а вот затем, спустя значения, стабилизируется, то данная линия тренда подойдет как нельзя кстати.

Полиномиальная аппроксимация . Переменное возрастание и убывание – вот характеристики, что свойственны данной линии. Причем, степень самих полиномов (многочленов) определяется количеством максимумов и минимумом.

Степенная аппроксимация . Характеризует монотонное возрастание и убывание величины, но применение ее невозможно, если данные имеют отрицательные и нулевые значения.

Скользящее среднее . Используется чтобы наглядно показать прямую зависимость одного от другого, путем сглаживания всех точек колебания. Это достигается путем выделения среднего значения между двумя соседними точками. Таким образом, график усредняется, а количество точек сокращается до значения, что было выбрано в меню «Точки» пользователем.

Как используется? Д ля прогнозирования экономический вариантов используется именно полиноминальная линия, степень многочлена которой определяется на основе нескольких принципов: максимизации коэффициента детерминации, а также экономической динамики показателя в период, за который требуется прогноз.

Следуя всем этапам формирования и, разобравшись в особенностях, можно построить всего первичную линию тренда , которая лишь отдаленно соответствует реальным прогнозам. Но вот после настройки параметров можно уже говорить о более реальной картине прогноза.

Линия тренда в Excel. Настройка параметро в функциональной линии

Нажав на кнопку «Линия тренда », выбираем необходимое меню под названием «Дополнительные параметры». В появившемся окне следует нажать на «Формат линии тренда », а после поставить и отметку напротив значения «поместить на диаграмму величину достоверности аппроксимации R^2». После этого закрываем меню, нажав на соответственную кнопку. На самой же диаграмме появляется коэффициент R^2= 0,6442.

После этого отменяем вводимые изменения. Выделив график и нажав на вкладку «Макет», следом нажимаем на «Линию тренда » и наживаем на «Нет». Следом, перейдя в функцию «Формат линии тренда », нажимаем на полиноминальную линию и пытаемся добиться значения R^2= 0,8321, меняя степень.

Чтобы просмотреть формулы или составить другие, отличные от стандартных вариации прогнозов, достаточно не бояться экспериментировать со значениями, а особенно – с полиномами. Таким образом, используя лишь одну программу Excel, можно создать достаточно точный прогноз исходя из вводимых данных.

Диаграммы и графики используются для анализа числовых данных, например, для оценки зависимости меж-ду двумя видами значений. С этой целью к данным диаграммы или графика можно добавить линию тренда и ее уравнение, прогнозные значения, рассчитанные на несколько периодов вперед или назад.

Предусмотрено несколько вариантов формирования линии трен-да.

Прямая линия тренда (линейный тренд) наилучшим образом подходит для величин, изменяющихся с постоянной скоростью. Приме-няется в случаях, когда точки данных расположены близко к прямой.

Логарифмическая линия тренда соответствует ряду данных, значения которого вначале быстро растут или убывают, а затем постепенно стабилизируются. Может использоваться для положительных и отрицательных данных.

Полиномиальной функцией (до 6-й степени включительно): y= b + c 1 *x + c 2 *x 2 + c 3 *x 3 + . + c 6* x 6

Полиномиальная линия тренда используется для описания попеременно возрастающих и убывающих данных. Степень полинома подбирают таким образом, чтобы она была на единицу больше количества экстремумов (максимумов и минимумов) кривой.

Степенная линия тренда дает хорошие результаты для положительных данных с постоянным ускорением. Для рядов с нулевыми или отрицательными значениями построение указанной линии трен-да невозможно.

где c и b — константы, е — основание натурального логарифма.

Экспоненциальный тренд используется в случае непрерывного возрастания изменения данных. Построение указанного тренда не- возможно, если в множестве значений членов ряда присутствуют нулевые или отрицательные данные.

С использованием линейной фильтрации по формуле: F t = (A t +A (t-1) +⋯+A (t-n+1))/n

где n — общее число членов ряда, t — заданное число точек (2 ≤ t

Чем более выраженная тенденция роста показателя или его падения, тем будет больше коэффициент a 1 . Соответственно, предполагается, что константа a 0 совместно со случайной компонентой Ɛ отражают остальные регрессионные влияния, помимо времени, то есть всех прочих возможных влияющих факторов.

Рассчитать коэффициенты модели можно стандартным Методом наименьших квадратов (МНК). Со всеми этими расчетами Microsoft Excel справляется на ура самостоятельно, при чем, чтобы получить модель линейного тренда либо готовый прогноз существует целых пять способов, которые мы по отдельности разберем ниже.

Графический способ получения линейного тренда

В этом и во всех дальнейших примерах будем использовать один и тот же динамический ряд – уровень ВВП, который вычисляется и фиксируется ежегодно, в нашем случае исследование будет проходить на периоде с 2004-го по 2012-й гг.

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Добавим к исходным данным еще один столбец, который назовем t и пометим цифрами по возрастающей порядковые номера всех зафиксированных значений ВВП за указанный период с 2004-го по 2012-й гг. – 9 лет или 9 периодов .

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Заполнив указанные поля, несколько раз нажимаем кнопку ОК и получаем готовый график динамики. Теперь выделяем правой кнопкой мыши саму линию графика и из появившегося контекстного меню выбираем пункт Добавить линию тренда

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Построение линейного тренда с помощью формулы ЛИНЕЙН

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Суть этого метода сводится к поиску коэффициентов линейного тренда с помощью функции ЛИНЕЙН , затем, подставляя эти влияющие коэффициенты в уравнение, получим прогнозную модель.

Нам потребуется выделить две рядом стоящие ячейки (на скриншоте это ячейки A38 и B38), далее в строке формул вверху (выделено красным на скриншоте выше) вызываем функцию, написав «=ЛИНЕЙН(», после чего эксель выведет подсказки того, что требуется для этой функции, а именно:

  1. выделяем диапазон с известными значениями описываемого показателя Y (в нашем случае ВВП, на скриншоте диапазон выделен синим) и ставим точку с запятой
  2. указываем диапазон влияющих факторов X (в нашем случае это показатель t, порядковый номер периодов, на скриншоте выделено зеленым) и ставим точку с запятой
  3. следующий по порядку требуемый параметр для функции – это определение того нужно ли рассчитывать константу, так как мы изначально рассматриваем модель с константой (коэффициент a 0), то ставим либо «ИСТИНА» либо «1» и точку с запятой
  4. далее нужно указать требуется ли расчет параметров статистики (в случае, если бы мы рассматривали этот вариант, то изначально пришлось бы выделить диапазон «под формулу» на несколько строк ниже). Указывать необходимость расчета параметров статистики, а именно стандартного значение ошибки для коэффициентов, коэффициента детерминированности, стандартной ошибки для Y, критерия Фишера, степеней свободы и пр. , есть смысл только тогда, когда вы понимаете, что они означают, в этом случае ставим либо «ИСТИНА», либо «1». В случае упрощенного моделирования, которому мы пытаемся научиться, на этом этапе прописывания формулы, ставим «ЛОЖЬ» либо «0» и добавляем после закрывающую скобочку «)»
  5. чтобы «оживить» формулу, то есть заставить ее работать после прописывания всех необходимых параметров, не достаточно нажать кнопку Enter, необходимо последовательно зажать три клавиши: Ctrl, Shift, Enter

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Чтобы получить расчетные значения Y по модели и, соответственно, чтобы получить прогноз, нужно просто подставить формулу в ячейку экселя, а вместо t указать ссылку на ячейку с требуемым номером периода (смотрите на скриншоте ячейку D25 ).

Для сравнения полученной модели с реальными данными, можно построить два графика, где в качестве Х указать порядковый номер периода, а в качестве Y в одном случае – реальный ВВП, а, в другом – расчетный (на скриншоте диаграмма справа).

Построение линейного тренда с помощью инструмента Регрессия в Пакете анализа

В статье , по сути, полностью описан этот метод, единственная же разница в том, что в наших исходных данных только один влияющий фактор Х (номер периода – t ).

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Прогнозирование с помощью линейного тренда через функцию ТЕНДЕНЦИЯ

Этот метод отличается от предыдущих тем, что он пропускает необходимые ранее этапы расчета параметров модели и подстановки полученных коэффициентов вручную в качестве формулы в ячейку, чтобы получить прогноз, эта функция как раз и выдает уже готовое рассчитанное прогнозное значение на основе известных исходных данных.

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Минус данного метода в том, что он не показывает ни уравнения модели, ни его коэффициентов, из-за чего нельзя сказать, что на основе такой-то модели мы получили такой-то прогноз, также как и нет какого-либо отражения параметров качества модели, того таки коэффициента детерминации, по которому можно было бы сказать имеет ли смысл брать во внимание полученный прогноз или нет.

Прогнозирование с помощью линейного тренда через функцию ПРЕДСКАЗ

Суть данной функции целиком и полностью идентична предыдущей, разница лишь в порядке прописывания исходных данных в формуле и в том, что нет настройки для наличия или отсутствия коэффициента a 0 (то есть функция подразумевает, что этот коэффициент, в любом случае, есть)

Как Извлечь Коэффициенты Линии Тренда в Excel • Равномерный разброс

Полученные результаты, как и в методе выше, это лишь готовый результат расчета прогнозного значения по линейной трендовой модели, он не выдает ни погрешностей, ни самой модели в математическом выражении.

Подводя итог к статье

Пост дня

MSI Afterburner для оверклокинга NVIDIA GeForce и AMD Radeon Версия MSI Afterburner для Android

Компания MSI представляет утилиту, которая позволяет настраивать, мониторить и разгонять видеокарты AMD и NVIDIA. Многие стараются скачать MSI Afterburner бесплатно на компьютер, чтобы иметь возможность регулировать.

Как удалить график но оставить линию тренда. Инструменты прогнозирования в Microsoft Excel
Оператор ЛИНЕЙН при вычислении использует метод линейного приближения. Его не стоит путать с методом линейной зависимости, используемым инструментом ТЕНДЕНЦИЯ . Его синтаксис имеет такой вид:
[expert_bq id=»1570″]Рассмотрим реальную ситуацию на складе с целью установления величины трудовых затрат по коробочной отборке заказа были проведены хронометражные наблюдения. Если же вы хотите что-то уточнить, обращайтесь ко мне![/expert_bq] Мы имеем две принципиально разные возможности:
А) Использовать линию как уровень поддержки (сопротивления), что бы войти по ней по направлению тренда
Б) Использовать трендовую линию Форекс для того, что бы сыграть на пробой (разворот) тренда.

Генерация сезонных трендов в MS EXCEL

  1. выделяем диапазон с известными значениями описываемого показателя Y (в нашем случае ВВП, на скриншоте диапазон выделен синим) и ставим точку с запятой
  2. указываем диапазон влияющих факторов X (в нашем случае это показатель t, порядковый номер периодов, на скриншоте выделено зеленым) и ставим точку с запятой
  3. следующий по порядку требуемый параметр для функции – это определение того нужно ли рассчитывать константу, так как мы изначально рассматриваем модель с константой (коэффициент a 0), то ставим либо «ИСТИНА» либо «1» и точку с запятой
  4. далее нужно указать требуется ли расчет параметров статистики (в случае, если бы мы рассматривали этот вариант, то изначально пришлось бы выделить диапазон «под формулу» на несколько строк ниже). Указывать необходимость расчета параметров статистики, а именно стандартного значение ошибки для коэффициентов, коэффициента детерминированности, стандартной ошибки для Y, критерия Фишера, степеней свободы и пр. , есть смысл только тогда, когда вы понимаете, что они означают, в этом случае ставим либо «ИСТИНА», либо «1». В случае упрощенного моделирования, которому мы пытаемся научиться, на этом этапе прописывания формулы, ставим «ЛОЖЬ» либо «0» и добавляем после закрывающую скобочку «)»
  5. чтобы «оживить» формулу, то есть заставить ее работать после прописывания всех необходимых параметров, не достаточно нажать кнопку Enter, необходимо последовательно зажать три клавиши: Ctrl, Shift, Enter

Данной кривой свойственны переменные возрастание и убывание. Для полиномов (многочленов) определяется степень (по количеству максимальных и минимальных величин). К примеру, один экстремум (минимум и максимум) – это вторая степень, два экстремума – третья степень, три – четвертая.

Период 14 15 16 17 18 19 20
Прогноз 1005,4 1024,18 1041,74 1058,24 1073,8 1088,51 1102,47
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: