Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Содержание

Множественная корреляция

Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым признаком, или оценивает тесноту совместного влияния факторов на результат.

Независимо от формы связи показатель множественной корреляции может быть найден как индекс множественной корреляции:

где S 2 ост – остаточная сумма квадратов для уравнения y = f(x1, x2,…,xp); S 2 y – общая сумма квадратов результативного признака.

Чем ближе его значение к 1, тем теснее связь результативного признака со всем набором исследуемых факторов.

Можно пользоваться следующей формулой индекса множественной корреляции

Формула индекса множественной корреляции для линейной регрессии получила название линейного коэффициента множественной корреляции или совокупного коэффициента корреляции.

Найдем для нашего примера совокупный коэффициент корреляции:

Для того чтобы не допустить возможного преувеличения тесноты связи, применяется скорректированный индекс (коэффициент) множественной корреляции

Скорректированный индекс множественной корреляции содержит поправку на число степеней свободы, а именно остаточная сумма квадратов делится на число степеней свободы остаточной вариации (пт – 1), а общая сумма квадратов отклонений – на число степеней свободы в целом по совокупности (п – 1).

Формула скорректированного индекса множественной детерминации имеет вид:

где п – число наблюдений; т – число параметров при переменных

Чем больше величина т, тем сильнее различия и R2.

Частные коэффициенты (или индексы) корреляции характеризуют тесноту связи между результатом и соответствующим фактором при устранении влияния других факторов, включенных в уравнение регрессии.

Показатели частной корреляции представляют собой отношение сокращения остаточной дисперсии за счет дополнительного включения в анализ нового фактора к остаточной дисперсии, имевшей место до введения его в модель.

Предположим, что зависимость y x1 характеризуется уравнением

Подставив в это уравнение фактическое значение x1, найдем теоретические величины и соответствующую величину остаточной дисперсии s 2 :

Включив в уравнение регрессии дополнительный фактор x2, получим уравнение регрессии вида

Чем большее число факторов включено в модель, тем меньше величина остаточной дисперсии, т.е. происходит ее сокращение. Чем больше доля этого сокращения в остаточной вариации до введения дополнительного фактора, тем теснее связь между y и x2 при постоянном действии фактора x1. Следовательно, чистое влияние фактора x2 на результат y можно найти как

Знак «точка» в выражении частного коэффициента корреляции ryx2×x1 означает элиминирование той переменной (переменных), которая стоит после знака «точка».

Аналогично определяется и чистое влияние на результат y фактора x1:

Если выразить остаточную дисперсию через показатель детерминации S 2 ост = S 2 y (1 – r 2 ), то формула коэффициента частной корреляции примет вид:

Рассмотренные показатели частной корреляции принято называть коэффициентами (индексами) частной корреляции первого порядка, ибо они фиксируют тесноту связи двух переменных при закреплении (элиминировании влияния) одного фактора.

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Если рассматривается регрессия с числом факторов р, то возможны частные коэффициенты корреляции не только первого, но и второго, третьего, . (р – 1) порядка, т. е. влияние фактора x1 можно оценить при разных условиях независимости действия других факторов:

ryx1×x2…xp – при неизменном действии всех факторов, включенных в уравнение регрессии.

Сопоставление коэффициентов частной корреляции разных порядков по мере увеличения числа включаемых факторов показывает процесс «очищения» связи результативного признака с исследуемым фактором.

Хотя частная корреляция разных порядков и может представлять аналитический интерес, в практических исследованиях предпочтение отдают показателям частной корреляции самого высокого порядка, ибо именно эти показатели являются дополнением к уравнению множественной регрессии.

В общем виде при наличии р факторов для уравнения

y = a + b1 × x1 + b2 × x2 + … + bp × xp + e.

коэффициент частной корреляции, измеряющий влияние на у фактора xi; при неизменном уровне других факторов, можно определить по формуле

где – множественный коэффициент детерминации всего комплекса р факторов с результатом; – тот же показатель детерминации, но без введения в модель фактора xi.

При i = 1 формула коэффициента частной корреляции примет вид:

Данный коэффициент частной корреляции позволяет измерить тесноту связи между у и xi при неизменном уровне всех других факторов, включенных в уравнение регрессии.

При двух факторах и i = 1 данная формула примет вид:

Соответственно при i = 2 и двух факторах частный коэффициент корреляции у с фактором x2 можно определить по формуле

В основном их используют на стадии формирования модели, в частности в процедуре отсева факторов.

Зная частные коэффициенты корреляции (последовательно первого, второго и более высокого порядка), можно определить совокупный коэффициент корреляции по формуле

При полной зависимости результативного признака от исследуемых факторов коэффициент совокупного влияния их равен единице. Из единицы вычитается доля остаточной вариации признак (1 – r 2 ), обусловленная последовательно включенными в анализ факторами. В результате подкоренное выражение характеризует совокупное действие всех исследуемых факторов.

Значимость уравнения множественной регрессии в целом, так же как и в парной регрессии, оценивается с помощью F-критерия Фишера:

где s 2 факт – факторная дисперсия на одну степень свободы; R 2 – коэффициент (индекс) множественной детерминации; n – число наблюдений; m – число параметров при переменных x (в линейной регрессии совпадает с числом включенных в модель факторов); s 2 ост – остаточная дисперсия на одну степень свободы.

Определяем все суммы квадратов и дисперсии. Общая сумма квадратов:

Остаточная дисперсия на одну степень свободы s 2 ост и вытекающую из нее стандартную ошибку s:

Определение дисперсии на одну степень свободы приводит дисперсии к сравнимому виду. Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину F-отношения, т.е. критерий F:

С помощью частного F-критерия можно проверить значимость всех коэффициентов регрессии в предположении, что каждый соответствующий фактор xi был введен в уравнение множественной регрессии последним.

Для проверки значимости коэффициентов регрессии определяется средняя квадратическая ошибка каждого коэффициента регрессии по формуле:

Затем определяется значение t-критерия Стьюдента по известной формуле:

Если величина частного F-критерия выше табличного значения, то это означает одновременно не только значимость рассматриваемого коэффициента регрессии, но и значимость частного коэффициента корреляции. Существует взаимосвязь между квадратом частного коэффициента корреляции и частным F-критерием, а именно

нелинейному уравнению множественной регрессии, в качестве которого выбираем полный полином второго порядка:

Для определения коэффициентов такого уравнения средствами Excel необходимо дополнительно сформировать 6 столбцов для расчета коэффициентов от b11 до b23. После этого применяем процедуру Регрессия \ Анализ данных. Результаты в следующей таблице:

Расчетные значения по этому уравнению приведены в соответствующем столбце таблицы. Статистические характеристики. Общая сумма квадратов:

Факторная дисперсия на одну степень свободы sфакт = 37,495/9 = 4,166. Остаточная дисперсия на одну степень свободы s 2 ост и вытекающая из нее стандартная ошибка sост:

Сопоставляя факторную и остаточную дисперсии в расчете на одну степень свободы, получим величину F-отношения, т.е. критерий F:

Средняя ошибка аппроксимации A = (17,62 / 20) × 100 = 88,11 %. Или:

Для полученных уравнений 1-го и 2-го порядков можно подсчитать все статистические характеристики, как в примере для линейной множественной регрессии: частный F-критерий, ошибки в определении коэффициентов и значения критериев Стьюдента для каждого из них, уравнение регрессии в стандартизованном масштабе и его статистические характеристики.

Множественная корреляция — Студопедия
Коэффициент корреляции, r, определяет, как силу, так и направление связи между зависимой и независимой переменными. Значения r находятся в диапазоне от — 1.0 (сильная отрицательная связь) до + 1.0 (сильная положительная связь). При r= 0 между переменными х и у нет никакой связи.
эксперт
Мнение эксперта
Михаил Соловьев, консультант по вопросам работы с продуктами Microsoft
Если у вас возникнут сложности, я помогу разобраться!
Задать вопрос эксперту
Для определения коэффициентов такого уравнения средствами Excel необходимо дополнительно сформировать 6 столбцов для расчета коэффициентов от b 11 до b 23. Если же вы хотите что-то уточнить, обращайтесь ко мне!
Приближенный расчет коэффициентов эластичности э 1 0,068 и э 2 0,161 показывает, что при увеличении показателейx (1) иx (4) на 1% урожайность зерновых повышается в среднем соответственно на 0,068% и 0,161%.
Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Коэффициент парной корреляции в Excel. Определение множественного коэффициента корреляции в MS Excel

Коэффициент корреляции используется в том случае, когда нужно определить значение зависимости между значениями. Позже эти данные задают в одной таблице которая определяется как матрица корреляции. С помощью программы Microsoft Excel можно сделать расчёт корреляции.

Корреляционная матрица в excel пример. Корреляционно-регрессионный анализ в Excel: инструкция выполнения

В сегодняшней статье речь пойдет о том, как переменные могут быть связаны друг с другом. С помощью корреляции мы сможем определить, существует ли связь между первой и второй переменной. Надеюсь, это занятие покажется вам не менее увлекательным, чем предыдущие!

Корреляция измеряет мощность и направление связи между x и y. На рисунке представлены различные типы корреляции в виде графиков рассеяния упорядоченных пар (x, y). По традиции переменная х размещается на горизонтальной оси, а y — на вертикальной.

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

График А являет собой пример положительной линейной корреляции: при увеличении х также увеличивается у, причем линейно. График В показывает нам пример отрицательной линейной корреляции, на котором при увеличении х у линейно уменьшается. На графике С мы видим отсутствие корреляции между х и у. Эти переменные никоим образом не влияют друг на друга.

Наконец, график D — это пример нелинейных отношений между переменными. По мере увеличения х у сначала уменьшается, потом меняет направление и увеличивается.

Оставшаяся часть статьи посвящена линейным взаимосвязям между зависимой и независимой переменными.

Коэффициент корреляции

Сила связи между х и у определяется близостью коэффициента корреляции к — 1.0 или +- 1.0. Изучите следующий рисунок.

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

График A показывает идеальную положительную корреляцию между х и у при r = + 1.0. График В — идеальная отрицательная корреляция между х и у при r = — 1.0. Графики С и D — примеры более слабых связей между зависимой и независимой переменными.

Коэффициент корреляции, r, определяет, как силу, так и направление связи между зависимой и независимой переменными. Значения r находятся в диапазоне от — 1.0 (сильная отрицательная связь) до + 1.0 (сильная положительная связь). При r= 0 между переменными х и у нет никакой связи.

Мы можем вычислить фактический коэффициент корреляции с помощью следующего уравнения:

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Как видите, между числом часов, посвященных изучению предмета, и экзаменационной оценкой существует весьма сильная положительная корреляция. Преподаватели будут весьма рады узнать об этом.

Какова выгода устанавливать связь между подобными переменными? Отличный вопрос. Если обнаруживается, что связь существует, мы можем предугадать экзаменационные результаты на основе определенного количества часов, посвященных изучению предмета. Проще говоря, чем сильнее связь, тем точнее будет наше предсказание.

Использование Excel для вычисления коэффициентов корреляции

Я уверен, что, взглянув на эти ужасные вычисления коэффициентов корреляции, вы испытаете истинную радость, узнав, что программа Excel может выполнить за вас всю эту работу с помощью функции КОРРЕЛ со следующими характеристиками:

Например, на рисунке показана функция КОРРЕЛ, используемая при вычислении коэффициента корреляции для примера с экзаменационной оценкой.

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Коэффициент корреляции отражает степень взаимосвязи между двумя показателями. Всегда принимает значение от -1 до 1. Если коэффициент расположился около 0, то говорят об отсутствии связи между переменными.

Расчет коэффициента корреляции в Excel

Рассмотрим на примере способы расчета коэффициента корреляции, особенности прямой и обратной взаимосвязи между переменными.

Y – независимая переменная, x – зависимая. Необходимо найти силу (сильная / слабая) и направление (прямая / обратная) связи между ними. Формула коэффициента корреляции выглядит так:

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Чтобы упростить ее понимание, разобьем на несколько несложных элементов.

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляцииЧто Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Между переменными определяется сильная прямая связь.

Встроенная функция КОРРЕЛ позволяет избежать сложных расчетов. Рассчитаем коэффициент парной корреляции в Excel с ее помощью. Вызываем мастер функций. Находим нужную. Аргументы функции – массив значений y и массив значений х:

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Видна сильная связь между y и х, т.к. линии идут практически параллельно друг другу. Взаимосвязь прямая: растет y – растет х, уменьшается y – уменьшается х.

Матрица парных коэффициентов корреляции в Excel

Корреляционная матрица представляет собой таблицу, на пересечении строк и столбцов которой находятся коэффициенты корреляции между соответствующими значениями. Имеет смысл ее строить для нескольких переменных.

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Матрица коэффициентов корреляции в Excel строится с помощью инструмента «Корреляция» из пакета «Анализ данных».

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции
Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Между значениями y и х1 обнаружена сильная прямая взаимосвязь. Между х1 и х2 имеется сильная обратная связь. Связь со значениями в столбце х3 практически отсутствует.

Коэффициент корреляции используется в том случае, когда нужно определить значение зависимости между значениями. Позже эти данные задают в одной таблице которая определяется как матрица корреляции. С помощью программы Microsoft Excel можно сделать расчёт корреляции.

Коэффициент корреляции определяется некоторыми данными. Если уровень показателя составляет от 0 до 0.3, то в таком случае связи нет. Если показатель составляет от 0.3 до 0.5 — это слабая связь. Если показатель доходит до 0.7, то связь средняя. Высокой можно назвать когда показатель достигает отметки 0.7-0.9. Если показатель составляет 1 — это наиболее сильная связь.

Первым делом нужно подключить пакет анализа данных. Без его активации дальнейшие действия нельзя провести. Подключить его можно открыв раздел «Главная» и в меню выбрать «Параметры».

Далее откроется новое окно. В нём нужно выбрать «Надстройки» и в поле управления параметрами выбрать среди элементов списка «Надстройки Excel»
После запуска окна параметров посредством его левого вертикального меню переходим в раздел «Надстройки». После этого нажимаем «Перейти».

После этих действий можно начать работу. Создана таблица с данными и на её примере сделаем нахождение множественного коэффициента корреляции.
Для начала откроем раздел «Данные» и среди инструментария выбираем «Анализ данных».

Откроется специальное окно с инструментами для анализа. Выбираем «Корреляция» и подтверждаем действие.

При корреляционной связи одной и той же величине одного признака соответствуют разные величины другого. Например: между ростом и весом имеется корреляционная связь, между заболеваемостью злокачественными новообразованиямии возрастом и т.д.

Существует 2 метода вычисления коэффициента корреляции: метод квадратов(Пирсона), метод рангов (Спирмена).

Наиболее точным является метод квадратов (Пирсона), при котором коэффициент корреляции определяется по формуле: , где

r ху ― коэффициент корреляции между статистическим рядом X и Y.

d х ― отклонение каждого из чисел статистического ряда X от своей средней арифметической.

d у ― отклонение каждого из чисел статистического ряда Y от своей средней арифметической.

В зависимости от силы связи и ее направления коэффициент корреляции может находиться в пределах от 0 до 1 (-1). Коэффициент корреляции, равный 0, говорит о полном отсутствии связи. Чем ближе уровень коэффициента корреляции к 1 или (-1), тем соответственно больше, теснее измеряемая им прямая или обратная связь. При коэффициенте корреляции равном 1 или (-1) связь полная, функциональная.

Схема оценки силы корреляционной связи по коэффициенту корреляции

Для вычисления коэффициента корреляции по методу квадратов составляется таблица из 7 колонок. Разберем процесс вычисления на примере:

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

мг/л

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

3. Определяем отклонение каждого V x от М x , т.е. d x .

4. Аналогично определяем отклонение каждого V у от M у, т.е. d у.

5. Определяем произведения отклонений. Полученное произведение суммируем и получаем.

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

6. d х возводим в квадрат и результаты суммируем, получаем.

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

7. Аналогично возводим в квадрат d у, результаты суммируем, получим

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

8. Наконец, все полученные суммы подставляем в формулу:

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Для решения вопроса о достоверности коэффициента корреляции определяют его среднюю ошибку по формуле:

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

(Если число наблюдений менее 30, тогда в знаменателе n–1).

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Величина коэффициента корреляции считается достоверной, если не менее чем в 3 раза превышает свою среднюю ошибку.

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

В нашем примере

Таким образом, коэффициент корреляции не достоверен, что вызывает необходимость увеличения числа наблюдений.

Коэффициент корреляции можно определить несколько менее точным, но намного более легким способом ― методом рангов (Спирмена).

составить два ряда из парных сопоставляемых признаков, обозначив первый и второй ряд соответственно х и у. При этом представить первый ряд признака в убывающем или возрастающем порядке, а числовые значения второго ряда расположить напротив тех значений первого ряда, которым они соответствуют

получить сумму квадратов разности (Σ d 2) и подставить полученные значения в формулу:

Пример: методом рангов установить направление и силу связи между стажем работы в годах и частотой травм, если получены следующие данные:

Обоснование выбора метода: для решения задачи может быть выбран только метод ранговой корреляции, т.к. первый ряд признака «стаж работы в годах» имеет открытые варианты (стаж работы до 1 года и 7 и более лет), что не позволяет использовать для установления связи между сопоставляемыми признаками более точный метод — метод квадратов.

Решение . Последовательность расчетов изложена в тексте, результаты представлены в табл. 2.

Каждый из рядов парных признаков обозначить через «х» и через «у» (графы 1-2).

Разность рангов возвести в квадрат (d 2) и получить сумму квадратов разности рангов Σ d 2 (графа 6).

Произвести расчет коэффициента ранговой корреляции по формуле:

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

где n — число сопоставляемых пар вариант в ряду «x» и в ряду «у»

1. История разработки критерия корреляции

Критерий корреляции Пирсона был разработан командой британских ученых во главе с Карлом Пирсоном (1857-1936) в 90-х годах 19-го века, для упрощения анализа ковариации двух случайных величин. Помимо Карла Пирсона над критерием корреляции Пирсона работали также Фрэнсис Эджуорт и Рафаэль Уэлдон .

2. Для чего используется критерий корреляции Пирсона?

Критерий корреляции Пирсона позволяет определить, какова теснота (или сила) корреляционной связи между двумя показателями, измеренными в количественной шкале. При помощи дополнительных расчетов можно также определить, насколько статистически значима выявленная связь.

Например, при помощи критерия корреляции Пирсона можно ответить на вопрос о наличии связи между температурой тела и содержанием лейкоцитов в крови при острых респираторных инфекциях, между ростом и весом пациента, между содержанием в питьевой воде фтора и заболеваемостью населения кариесом.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в количественной шкале (например, частота сердечных сокращений, температура тела, содержание лейкоцитов в 1 мл крови, систолическое артериальное давление).
  2. Посредством критерия корреляции Пирсона можно определить лишь наличие и силу линейной взаимосвязи между величинами. Прочие характеристики связи, в том числе направление (прямая или обратная), характер изменений (прямолинейный или криволинейный), а также наличие зависимости одной переменной от другой — определяются при помощи регрессионного анализа .
  3. Количество сопоставляемых величин должно быть равно двум. В случае анализ взаимосвязи трех и более параметров следует воспользоваться методом факторного анализа .
  4. Критерий корреляции Пирсона является параметрическим , в связи с чем условием его применения служит нормальное распределение сопоставляемых переменных. В случае необходимости корреляционного анализа показателей, распределение которых отличается от нормального, в том числе измеренных в порядковой шкале, следует использовать коэффициент ранговой корреляции Спирмена .
  5. Следует четко различать понятия зависимости и корреляции. Зависимость величин обуславливает наличие корреляционной связи между ними, но не наоборот.

Приведенный пример показывает, как важно различать фундаментальные в статистике понятия связи и зависимости показателей для построения верных выводов.

4. Как рассчитать коэффициента корреляции Пирсона?

Расчет коэффициента корреляции Пирсона производится по следующей формуле:

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

5. Как интерпретировать значение коэффициента корреляции Пирсона?

Для оценки тесноты, или силы, корреляционной связи обычно используют общепринятые критерии, согласно которым абсолютные значения r xy 0.7 — о сильной связи.

Более точную оценку силы корреляционной связи можно получить, если воспользоваться таблицей Чеддока :

Оценка статистической значимости коэффициента корреляции r xy осуществляется при помощи t-критерия, рассчитываемого по следующей формуле:

Что Показывает Коэффициент Множественной Корреляции в Excel • Коэффициент корреляции

Полученное значение t r сравнивается с критическим значением при определенном уровне значимости и числе степеней свободы n-2. Если t r превышает t крит, то делается вывод о статистической значимости выявленной корреляционной связи.

6. Пример расчета коэффициента корреляции Пирсона

Целью исследования явилось выявление, определение тесноты и статистической значимости корреляционной связи между двумя количественными показателями: уровнем тестостерона в крови (X) и процентом мышечной массы в теле (Y). Исходные данные для выборки, состоящей из 5 исследуемых (n = 5), сведены в таблице.

Корреляционная матрица в excel пример. Корреляционно-регрессионный анализ в Excel: инструкция выполнения
составить два ряда из парных сопоставляемых признаков, обозначив первый и второй ряд соответственно х и у. При этом представить первый ряд признака в убывающем или возрастающем порядке, а числовые значения второго ряда расположить напротив тех значений первого ряда, которым они соответствуют
эксперт
Мнение эксперта
Михаил Соловьев, консультант по вопросам работы с продуктами Microsoft
Если у вас возникнут сложности, я помогу разобраться!
Задать вопрос эксперту
Сопоставляемые показатели должны быть измерены в количественной шкале например, частота сердечных сокращений, температура тела, содержание лейкоцитов в 1 мл крови, систолическое артериальное давление. Если же вы хотите что-то уточнить, обращайтесь ко мне!
6) В левой верхней ячейке выделенной области появится первый элемент итоговой таблицы. Поэтому гипотеза Н0 отклоняется, то есть параметры регрессии и коэффициент корреляции не случайно отличаются от нуля, а статистически значимы. 7. Полученные оценки уравнения регрессии позволяют использовать его для прогноза.

Как рассчитать эмпирическое корреляционное отношение в excel. Как рассчитать коэффициент корреляции в Excel

  1. Сопоставляемые показатели должны быть измерены в количественной шкале (например, частота сердечных сокращений, температура тела, содержание лейкоцитов в 1 мл крови, систолическое артериальное давление).
  2. Посредством критерия корреляции Пирсона можно определить лишь наличие и силу линейной взаимосвязи между величинами. Прочие характеристики связи, в том числе направление (прямая или обратная), характер изменений (прямолинейный или криволинейный), а также наличие зависимости одной переменной от другой — определяются при помощи регрессионного анализа .
  3. Количество сопоставляемых величин должно быть равно двум. В случае анализ взаимосвязи трех и более параметров следует воспользоваться методом факторного анализа .
  4. Критерий корреляции Пирсона является параметрическим , в связи с чем условием его применения служит нормальное распределение сопоставляемых переменных. В случае необходимости корреляционного анализа показателей, распределение которых отличается от нормального, в том числе измеренных в порядковой шкале, следует использовать коэффициент ранговой корреляции Спирмена .
  5. Следует четко различать понятия зависимости и корреляции. Зависимость величин обуславливает наличие корреляционной связи между ними, но не наоборот.

Я уверен, что, взглянув на эти ужасные вычисления коэффициентов корреляции, вы испытаете истинную радость, узнав, что программа Excel может выполнить за вас всю эту работу с помощью функции КОРРЕЛ со следующими характеристиками:

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector